A Closed-Form Parametrization and an Alternative Computational Algorithm for Approximating Slices of Minkowski Sums of Ellipsoids in R 3
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- C. Durieu & É. Walter & B. Polyak, 2001. "Multi-Input Multi-Output Ellipsoidal State Bounding," Journal of Optimization Theory and Applications, Springer, vol. 111(2), pages 273-303, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liao, Wei & Liang, Taotao & Wei, Xiaohui & Yin, Qiaozhi, 2022. "Probabilistic reach-Avoid problems in nondeterministic systems with time-Varying targets and obstacles," Applied Mathematics and Computation, Elsevier, vol. 425(C).
- Zhang, Liang & Feng, Zhiguang & Jiang, Zhengyi & Zhao, Ning & Yang, Yang, 2020. "Improved results on reachable set estimation of singular systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
- Yongchun Jiang & Hongli Yang & Ivan Ganchev Ivanov, 2024. "Reachable Set Estimation and Controller Design for Linear Time-Delayed Control System with Disturbances," Mathematics, MDPI, vol. 12(2), pages 1-10, January.
- Ligang Sun & Hamza Alkhatib & Boris Kargoll & Vladik Kreinovich & Ingo Neumann, 2019. "Ellipsoidal and Gaussian Kalman Filter Model for Discrete-Time Nonlinear Systems," Mathematics, MDPI, vol. 7(12), pages 1-22, December.
- Nguyen D. That & Phan T. Nam & Q. P. Ha, 2013. "Reachable Set Bounding for Linear Discrete-Time Systems with Delays and Bounded Disturbances," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 96-107, April.
More about this item
Keywords
slice of Minkowski sum; ellipsoids; closed-form parametrization; approximation; computational algorithm; Kurzhanski’s bounds;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2022:i:1:p:137-:d:1017064. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.