IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1518-d807465.html
   My bibliography  Save this article

Influences of Boundary Temperature and Angular Velocity on Thermo-Elastic Characteristics of a Functionally Graded Circular Disk Subjected to Contact Forces

Author

Listed:
  • Jaegwi Go

    (Department of Electrical Engineering, Dong-A University, 37, Nakdong-daero 550beon-gil, Saha, Busan 49315, Korea)

Abstract

The behaviors of functionally graded (FG) engineering structures are influenced by various parameters, such as the boundary temperature, the angular velocity, variations in the thickness, the weight of the structure, and the loading state. The thermo-elastic characteristics of FG rotating circular disks under the loading of contact forces were investigated. Hooke’s law in plane stress problems was applied to derive a pair of partial differential equations and a finite volume method was developed due to the complexity of the governing equations. The thermo-elastic characteristics of the FG rotating disks were investigated according to the variations in their outer boundary temperature and angular velocity. The increase in the outer boundary temperature caused crack generation at the inner surface of the circular disk and on the opposite side to the loading point. The increase in the angular velocity caused unstable thermo-elastic behaviors near the area of the outer boundary surface, especially at 0.7 < ( r − a ) / ( b − a ) < 0.9, and may have led to crack generation at the outer surface of the rotating disk. These results may be applied to the design of functionally graded circular cutters or grinding disks undergoing contact forces to produce proper and reliable thermo-elastic characteristics for practical applications.

Suggested Citation

  • Jaegwi Go, 2022. "Influences of Boundary Temperature and Angular Velocity on Thermo-Elastic Characteristics of a Functionally Graded Circular Disk Subjected to Contact Forces," Mathematics, MDPI, vol. 10(9), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1518-:d:807465
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1518/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Kamil Żur & Jinseok Kim & Junuthula N. Reddy, 2022. "Special Issue of Mathematics : Analytical and Numerical Methods for Linear and Nonlinear Analysis of Structures at Macro, Micro and Nano Scale," Mathematics, MDPI, vol. 10(13), pages 1-2, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1518-:d:807465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.