IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1511-d807166.html
   My bibliography  Save this article

Adaptive Differential Evolution Algorithm Based on Fitness Landscape Characteristic

Author

Listed:
  • Liming Zheng

    (Department of Electronic Engineering, School of Information Science and Technology, Jinan University, Guangzhou 510632, China)

  • Shiqi Luo

    (Department of Electronic Engineering, School of Information Science and Technology, Jinan University, Guangzhou 510632, China)

Abstract

Differential evolution (DE) is a simple, effective, and robust algorithm, which has demonstrated excellent performance in dealing with global optimization problems. However, different search strategies are designed for different fitness landscape conditions to find the optimal solution, and there is not a single strategy that can be suitable for all fitness landscapes. As a result, developing a strategy to adaptively steer population evolution based on fitness landscape is critical. Motivated by this fact, in this paper, a novel adaptive DE based on fitness landscape (FL-ADE) is proposed, which utilizes the local fitness landscape characteristics in each generation population to (1) adjust the population size adaptively; (2) generate DE/current-to-pcbest mutation strategy. The adaptive mechanism is based on local fitness landscape characteristics of the population and enables to decrease or increase the population size during the search. Due to the adaptive adjustment of population size for different fitness landscapes and evolutionary processes, computational resources can be rationally assigned at different evolutionary stages to satisfy diverse requirements of different fitness landscapes. Besides, the DE/current-to-pcbest mutation strategy, which randomly chooses one of the top p % individuals from the archive cbest of local optimal individuals to be the pcbest, is also an adaptive strategy based on fitness landscape characteristic. Using the individuals that are approximated as local optimums increases the algorithm’s ability to explore complex multimodal functions and avoids stagnation due to the use of individuals with good fitness values. Experiments are conducted on CEC2014 benchmark test suit to demonstrate the performance of the proposed FL-ADE algorithm, and the results show that the proposed FL-ADE algorithm performs better than the other seven highly performing state-of-art DE variants, even the winner of the CEC2014 and CEC2017. In addition, the effectiveness of the adaptive population mechanism and DE/current-to-pcbest mutation strategy based on landscape fitness proposed in this paper are respectively verified.

Suggested Citation

  • Liming Zheng & Shiqi Luo, 2022. "Adaptive Differential Evolution Algorithm Based on Fitness Landscape Characteristic," Mathematics, MDPI, vol. 10(9), pages 1-33, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1511-:d:807166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hultmann Ayala, Helon Vicente & Coelho, Leandro dos Santos & Mariani, Viviana Cocco & Askarzadeh, Alireza, 2015. "An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module," Energy, Elsevier, vol. 93(P2), pages 1515-1522.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastián Muñoz-Herrera & Karol Suchan, 2022. "Local Optima Network Analysis of Multi-Attribute Vehicle Routing Problems," Mathematics, MDPI, vol. 10(24), pages 1-21, December.
    2. Pawnrat Thumrongvut & Kanchana Sethanan & Thitipong Jamrus & Chuleeporn Wongloucha & Rapeepan Pitakaso & Paulina Golinska-Dawson, 2022. "Metaheuristics in Business Model Development for Local Tourism Sustainability Enhancement," Mathematics, MDPI, vol. 10(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madi, Saida & Kheldoun, Aissa, 2017. "Bond graph based modeling for parameter identification of photovoltaic module," Energy, Elsevier, vol. 141(C), pages 1456-1465.
    2. Fangzhou Hao & Jieran Ma & Linhuan Luo & Weijun Dang & Yiwei Xue, 2023. "Power distribution network inspection vision system based on bionic vision image processing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(2), pages 568-577, April.
    3. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    4. Hassan Shaban & Essam H. Houssein & Marco Pérez-Cisneros & Diego Oliva & Amir Y. Hassan & Alaa A. K. Ismaeel & Diaa Salama AbdElminaam & Sanchari Deb & Mokhtar Said, 2021. "Identification of Parameters in Photovoltaic Models through a Runge Kutta Optimizer," Mathematics, MDPI, vol. 9(18), pages 1-22, September.
    5. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    7. Jiao, Shan & Chong, Guoshuang & Huang, Changcheng & Hu, Hanqing & Wang, Mingjing & Heidari, Ali Asghar & Chen, Huiling & Zhao, Xuehua, 2020. "Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models," Energy, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1511-:d:807166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.