IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i8p1224-d789615.html
   My bibliography  Save this article

Unsupervised Fault Diagnosis of Sucker Rod Pump Using Domain Adaptation with Generated Motor Power Curves

Author

Listed:
  • Dezhi Hao

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Xianwen Gao

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

The poor real-time performance and high maintenance costs of the dynamometer card (DC) sensors have been significant obstacles to the timely fault diagnosis in the sucker rod pumping system (SRPS). In contrast to the DCs, the motor power curves (MPCs), which are accessible easily and highly associated with the entire system, have been attempted to predict the working conditions of the SRPS in recent years. However, the lack of labeled MPCs limits the successful applications in the industrial scenario. Thereby, this paper presents an unsupervised fault diagnosis methodology to leverage the generated MPCs of different working conditions to diagnose the actual unlabeled MPCs. Firstly, the MPCs of six working conditions are generated with an integrated dynamics mathematical model. Secondly, a framework named mechanism-assisted domain adaptation network (MADAN) is proposed to minimize the distribution discrepancy between the generated and actual MPCs. Specifically, benefiting from introducing the mechanism analysis to label the collected MPCs preliminarily, a conditional distribution discrepancy metric is defined to guarantee a more accurate distribution matching with respect to different working conditions. Eventually, validation experiments are performed to evaluate the mathematical model and the diagnosis method with a set of actual MPCs collected by a self-developed device. The experimental result demonstrates that the proposed method offers a promising approach for the unsupervised diagnosis of the SRPS.

Suggested Citation

  • Dezhi Hao & Xianwen Gao, 2022. "Unsupervised Fault Diagnosis of Sucker Rod Pump Using Domain Adaptation with Generated Motor Power Curves," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1224-:d:789615
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/8/1224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/8/1224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abhijeet Ainapure & Shahin Siahpour & Xiang Li & Faray Majid & Jay Lee, 2022. "Intelligent Robust Cross-Domain Fault Diagnostic Method for Rotating Machines Using Noisy Condition Labels," Mathematics, MDPI, vol. 10(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Li & Shuo Zhang & Wei Zhang, 2023. "Applied Computing and Artificial Intelligence," Mathematics, MDPI, vol. 11(10), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:8:p:1224-:d:789615. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.