IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1085-d781233.html
   My bibliography  Save this article

Logics of Statements in Context-Category Independent Basics

Author

Listed:
  • Uwe Wolter

    (Department of Informatics, University of Bergen, 5020 Bergen, Norway)

Abstract

Based on a formalization of open formulas as statements in context, the paper presents a freshly new and abstract view of logics and specification formalisms. Generalizing concepts like sets of generators in Group Theory, underlying graph of a sketch in Category Theory, sets of individual names in Description Logic and underlying graph-based structure of a software model in Software Engineering, we coin an abstract concept of context. We show how to define, in a category independent way, arbitrary first-order statements in arbitrary contexts. Examples of those statements are defining relations in Group Theory, commutative, limit and colimit diagrams in Category Theory, assertional axioms in Description Logic and constraints in Software Engineering. To validate the appropriateness of the newly proposed abstract framework, we prove that our category independent definitions and constructions give us a very broad spectrum of Institutions of Statements at hand. For any Institution of Statements, a specification (presentation) is given by a context together with a set of first-order statements in that context. Since many of our motivating examples are variants of sketches, we will simply use the term sketch for those specifications. We investigate exhaustively different kinds of arrows between sketches and their interrelations. To pave the way for a future development of category independent deduction calculi for sketches, we define arbitrary first-order sketch conditions and corresponding sketch constraints as a generalization of graph conditions and graph constraints, respectively. Sketch constraints are the crucial conceptual tool to describe and reason about the structure of sketches. We close the paper with some vital observations, insights and ideas related to future deduction calculi for sketches. Moreover, we outline that our universal method to define sketch constraints enables us to establish and to work with conceptual hierarchies of sketches.

Suggested Citation

  • Uwe Wolter, 2022. "Logics of Statements in Context-Category Independent Basics," Mathematics, MDPI, vol. 10(7), pages 1-65, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1085-:d:781233
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1085/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1085-:d:781233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.