IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1060-d779994.html
   My bibliography  Save this article

Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface

Author

Listed:
  • Lioua Kolsi

    (Mechanical Engineering Department, College of Engineering, University of Ha’il, Ha’il 81451, Saudi Arabia)

  • Shafqat Hussain

    (Department of Mathematics, Capital University of Science and Technology, Islamabad 44000, Pakistan)

  • Kaouther Ghachem

    (Department of Industrial Engineering and Systems, College of Engineering, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Muhammad Jamal

    (Department of Mathematics & Statistics, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan)

  • Chemseddine Maatki

    (Department of Mechanical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
    Laboratory of Metrology and Energy Systems, University of Monastir, Monastir 5000, Tunisia)

Abstract

This study deals with the influence of a wavy interface separating two layers filled with power law fluid and porous media, respectively. The governing equations are solved using the Finite Element Method (FEM) and the numerical model is validated by comparing with experimental findings. The parameters governing the studied configuration are varied as: Rayleigh number (10 3 ≤ Ra ≤ 10 6 ), power law index (0.6 ≤ n ≤ 1.4), Darcy number (10 −2 ≤ Da ≤ 10 −6 ), buoyancy ratio (0.1 ≤ N ≤ 10) and Lewis number (1 ≤ Le ≤ 10). It is inferred that the temperature gradient increases by augmenting the Rayleigh number, as the flow is observed from the vertical to horizontal direction in both layers. Constant enhancement in the heat and mass transfer is also observed by enriching the buoyancy effect. Moreover, the average Nusselt and Sherwood numbers decline by increasing the width of the porous layer.

Suggested Citation

  • Lioua Kolsi & Shafqat Hussain & Kaouther Ghachem & Muhammad Jamal & Chemseddine Maatki, 2022. "Double Diffusive Natural Convection in a Square Cavity Filled with a Porous Media and a Power Law Fluid Separated by a Wavy Interface," Mathematics, MDPI, vol. 10(7), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1060-:d:779994
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: ," Energy, Elsevier, vol. 107(C), pages 917-959.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chemseddine Maatki, 2023. "Numerical Analysis of Entropy Generation in a Double Stage Triangular Solar Still Using CNT-Nanofluid under Double-Diffusive Natural Convection," Mathematics, MDPI, vol. 11(13), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yuan & Mohebbi, Rasul & Rashidi, M.M. & Yang, Zhigang & Sheremet, Mikhail, 2020. "Nanoliquid thermal convection in I-shaped multiple-pipe heat exchanger under magnetic field influence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    2. Kefayati, G.H.R., 2016. "Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: S," Energy, Elsevier, vol. 107(C), pages 889-916.
    3. Saghi, Hassan & Lakzian, Esmail, 2017. "Optimization of the rectangular storage tanks for the sloshing phenomena based on the entropy generation minimization," Energy, Elsevier, vol. 128(C), pages 564-574.
    4. Fatih Selimefendigil & Hakan F. Oztop & Ali J. Chamkha, 2021. "Jet Impingement Heat Transfer of Confined Single and Double Jets with Non-Newtonian Power Law Nanofluid under the Inclined Magnetic Field Effects for a Partly Curved Heated Wall," Sustainability, MDPI, vol. 13(9), pages 1-23, May.
    5. Mohebbi, Rasul & Delouei, Amin Amiri & Jamali, Amin & Izadi, Mohsen & Mohamad, Abdulmajeed A., 2019. "Pore-scale simulation of non-Newtonian power-law fluid flow and forced convection in partially porous media: Thermal lattice Boltzmann method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 642-656.
    6. Siddabasappa, C. & Sakshath, T.N., 2021. "Effect of thermal non-equilibrium and internal heat source on Brinkman–Bénard convection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1060-:d:779994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.