Author
Listed:
- Shenling Wang
(School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China)
- Yifang Zhang
(School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China)
- Yu Guo
(School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China)
Abstract
As increasing clients tend to outsource massive multimedia data generated by Internet of Things (IoT) devices to the cloud, data auditing is becoming crucial, as it enables clients to verify the integrity of their outsourcing data. However, most existing data auditing schemes cannot guarantee 100% data integrity and cannot meet the security requirement of practical multimedia services. Moreover, the lack of fair arbitration leads to clients not receiving compensation in a timely manner when the outsourced data is corrupted by the cloud service provider (CSP). In this work, we propose an arbitrable data auditing scheme based on the blockchain. In our scheme, clients usually only need to conduct private audits, and public auditing by a smart contract is triggered only when verification fails in private auditing. This hybrid auditing design enables clients to save audit fees and receive compensation automatically and in a timely manner when the outsourced data are corrupted by the CSP. In addition, by applying the deterministic checking technique based on a bilinear map accumulator, our scheme can guarantee 100% data integrity. Furthermore, our scheme can prevent fraudulent claims when clients apply for compensation from the CSP. We analyze the security strengths and complete the prototype’s implementation. The experimental results show that our blockchain-based data auditing scheme is secure, efficient, and practical.
Suggested Citation
Shenling Wang & Yifang Zhang & Yu Guo, 2022.
"A Blockchain-Empowered Arbitrable Multimedia Data Auditing Scheme in IoT Cloud Computing,"
Mathematics, MDPI, vol. 10(6), pages 1-17, March.
Handle:
RePEc:gam:jmathe:v:10:y:2022:i:6:p:1005-:d:775893
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:6:p:1005-:d:775893. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.