IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i4p622-d751850.html
   My bibliography  Save this article

Fuzzy Algebraic Modeling of Spatiotemporal Timeseries’ Paradoxes in Cosmic Scale Kinematics

Author

Listed:
  • Lazaros Iliadis

    (Lab of Mathematics and Informatics ISCE, School of Engineering, Department of Civil Engineering, University Campus, Democritus University of Thrace, Kimmeria, 67100 Xanthi, PC, Greece)

Abstract

This paper introduces the prototype of a generic fuzzy algebraic framework, that aims to serve as a holistic modeling approach of kinematics. Moreover, it detects paradoxes and uncertainties when the involved features of the timeseries have “unconventional” values. All well accepted models are perfectly capturing and clearly describing the spatiotemporal characteristics of a moving object’s (MO) status, when its actual distance from the observer is conventional, i.e., “insignificant compared to the magnitude of light years”. Let us consider the concept that emerges by the following Boolean expression1 (BE1): “Velocity is significant compared to the speed of light (SIV_cSL) AND distance between observer and moving body is significant compared to light years (SID_cLY)”. The only restriction in the above BE1 Boolean expression is that velocity would always be less than C. So far, BE1 is not considered to be true in the models that are employed to build our scientific physics studies. This modeling effort performs mining of kinematics phenomena for which BE1 is true. This approach is quite innovative, in the sense that it reveals paradoxes and uncertainties, and it reaches the following conclusions: When a particle is moving inside hypersurfaces characterized by any type of BE1′s negation, our existing kinematics’ models can survive. In the opposite case, we are gradually led to paradoxes and uncertainties. The gradual and smooth transition from the one state to the other as well as the importance of the aforementioned limitations, can be inferred-modeled by employing fuzzy logic.

Suggested Citation

  • Lazaros Iliadis, 2022. "Fuzzy Algebraic Modeling of Spatiotemporal Timeseries’ Paradoxes in Cosmic Scale Kinematics," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:622-:d:751850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/4/622/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/4/622/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:4:p:622-:d:751850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.