IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p504-d742407.html
   My bibliography  Save this article

Influence of Bioconvection and Chemical Reaction on Magneto—Carreau Nanofluid Flow through an Inclined Cylinder

Author

Listed:
  • Hossam A. Nabwey

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt)

  • Sumayyah I. Alshber

    (Department of Mathematics, College of Education in Al-Dilam, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia)

  • Ahmed M. Rashad

    (Department of Mathematics, Faculty of Science, Aswan University, Aswan 81528, Egypt)

  • Abd El Nasser Mahdy

    (Mathematics Department, Faculty of Science, South Valley University, Qena 83523, Egypt)

Abstract

The present contribution focuses on heat transmission in the conjugate mixed bioconvection flow of Carreau nanofluid with swimming gyrotactic microorganisms through an inclined stretchable cylinder with variable magnetic field impact and binary chemical reaction. Additionally, the investigation involves the aspects of variable decrease or increase in heat source and non-uniform thermal conductivity. A passively controlled nanofluid pattern is used to estimate this nano-bioconvection flow case, which is believed to be more physically accurate than the earlier actively controlled nanofluid typically employed. One of essential features of this investigation is the imposition of a zero-mass flux condition at the surface of the cylinder. Through the implementation of an appropriate transformation, the nonlinear PDE system is mutated into similar equations. The flow equations thus obtained are solved numerically to explore the influence of the physical constraints involved through implementation with the aid of the MATLAB bvp4c code. The solutions were captured for both zero and non-zero bioconvection Rayleigh number, i.e., for flow with and without microorganisms. The present numerical results are compared with the available data and are determined to be in excellent agreement. The significant result of the present article is that the degree of nanoparticle concentration in the nanofluid exhibits an increasing trend with higher values of activation energy constraint.

Suggested Citation

  • Hossam A. Nabwey & Sumayyah I. Alshber & Ahmed M. Rashad & Abd El Nasser Mahdy, 2022. "Influence of Bioconvection and Chemical Reaction on Magneto—Carreau Nanofluid Flow through an Inclined Cylinder," Mathematics, MDPI, vol. 10(3), pages 1-14, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:504-:d:742407
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/504/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilal Ahmad & Muhammad Ozair Ahmad & Liaqat Ali & Bagh Ali & Ahmed Kadhim Hussein & Nehad Ali Shah & Jae Dong Chung, 2022. "Significance of the Coriolis Force on the Dynamics of Carreau–Yasuda Rotating Nanofluid Subject to Darcy–Forchheimer and Gyrotactic Microorganisms," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
    2. Sivasankaran Sivanandam & Fouad O. M. Mallawi, 2022. "Effects of Variable Properties on the Convective Flow of Water near Its Density Extremum in an Inclined Enclosure with Entropy Generation," Mathematics, MDPI, vol. 10(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:504-:d:742407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.