IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p409-d736241.html
   My bibliography  Save this article

Experimental Validation of Model Heat Transfer in Rectangular Hole Beams Using Modern Dimensional Analysis

Author

Listed:
  • Ildiko Renata Száva

    (Department of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 20, 500036 Brasov, Romania)

  • Daniela Șova

    (Department of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 20, 500036 Brasov, Romania)

  • Dani Peter

    (Department of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 20, 500036 Brasov, Romania)

  • Pavel Élesztős

    (Department of Mechanics, University of Bratislava, 814 99 Bratislava, Slovakia)

  • Ioan Száva

    (Department of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 20, 500036 Brasov, Romania)

  • Sorin Vlase

    (Department of Mechanical Engineering, Transilvania University of Brașov, B-dul Eroilor 20, 500036 Brasov, Romania
    Romanian Academy of Technical Sciences, Calea Victoriei, 010068 Bucharest, Romania)

Abstract

Based on the Szirtes’ modern dimensional analysis (MDA), the authors apply the theory to a real structure in order to validate by experimental measurements its applicability. After a presentation of the basic elements of the model law (ML), deduced for two relevant cases, the authors conceived the set of prototypes and models, based on the case of an actual construction pillar, physically performed at scales of 1:1, 1:2, and 1:4. The combination of these structural elements, made at different scales, resulted in three sets of prototypes and models. In this paper, taking into consideration the ML for two relevant cases, the following are presented: the original test stand of these structural elements; block diagram of the original electronic heating and control system; the basic considerations regarding the particularity of this heating system from the point of view of heat transfer; measurement data, obtained for both nonthermally protected elements and for those protected with layers of intumescent paints. In the last part of the paper, the values obtained by rigorous direct measurements with those offered by the ML on the elements considered as prototypes and models are compared. Almost identical values were obtained from the direct measurements with those provided by the ML, thus resulting in the validation of these laws. The same thermal regimes were applied to all these structural elements, with registration of every parameter related to these thermal regimes. Depending on the role of a structural element within a certain set (prototype-model), some of the measurement data were considered as data acquired directly through measurements, and others served as reference elements for those for which we had to obtain through the model law. In the last part of the paper, the sizes obtained by rigorous direct measurements are compared with those offered by the model law on the elements considered as prototypes and models. Identical practical values of the quantities were obtained from the direct measurements with those provided by the model law, thus resulting in the validation of these laws.

Suggested Citation

  • Ildiko Renata Száva & Daniela Șova & Dani Peter & Pavel Élesztős & Ioan Száva & Sorin Vlase, 2022. "Experimental Validation of Model Heat Transfer in Rectangular Hole Beams Using Modern Dimensional Analysis," Mathematics, MDPI, vol. 10(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:409-:d:736241
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/409/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/409/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolae Pop & Marin Marin & Sorin Vlase, 2023. "Mathematics in Finite Element Modeling of Computational Friction Contact Mechanics 2021–2022," Mathematics, MDPI, vol. 11(1), pages 1-5, January.
    2. Ioan Száva & Sorin Vlase & Ildikó-Renáta Száva & Gábor Turzó & Violeta Mihaela Munteanu & Teofil Gălățanu & Zsolt Asztalos & Botond-Pál Gálfi, 2023. "Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves," Mathematics, MDPI, vol. 11(3), pages 1-33, February.
    3. Luis Pérez-Domínguez & Harish Garg & David Luviano-Cruz & Jorge Luis García Alcaraz, 2022. "Estimation of Linear Regression with the Dimensional Analysis Method," Mathematics, MDPI, vol. 10(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:409-:d:736241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.