IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i2p243-d724014.html
   My bibliography  Save this article

Bifurcation and Patterns Analysis for a Spatiotemporal Discrete Gierer-Meinhardt System

Author

Listed:
  • Biao Liu

    (School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China)

  • Ranchao Wu

    (School of Mathematical Sciences, Anhui University, Hefei 230601, China)

Abstract

The Gierer-Meinhardt system is one of the prototypical pattern formation models. The bifurcation and pattern dynamics of a spatiotemporal discrete Gierer-Meinhardt system are investigated via the couple map lattice model (CML) method in this paper. The linear stability of the fixed points to such spatiotemporal discrete system is analyzed by stability theory. By using the bifurcation theory, the center manifold theory and the Turing instability theory, the Turing instability conditions in flip bifurcation and Neimark–Sacker bifurcation are considered, respectively. To illustrate the above theoretical results, numerical simulations are carried out, such as bifurcation diagram, maximum Lyapunov exponents, phase orbits, and pattern formations.

Suggested Citation

  • Biao Liu & Ranchao Wu, 2022. "Bifurcation and Patterns Analysis for a Spatiotemporal Discrete Gierer-Meinhardt System," Mathematics, MDPI, vol. 10(2), pages 1-14, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:243-:d:724014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/2/243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/2/243/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun Liu & Lifeng Guo & Xijuan Liu, 2023. "Dynamical Behaviors in a Stage-Structured Model with a Birth Pulse," Mathematics, MDPI, vol. 11(15), pages 1-13, July.
    2. Ishtiaq Ali & Maliha Tehseen Saleem, 2023. "Spatiotemporal Dynamics of Reaction–Diffusion System and Its Application to Turing Pattern Formation in a Gray–Scott Model," Mathematics, MDPI, vol. 11(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:2:p:243-:d:724014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.