IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4785-d1005224.html
   My bibliography  Save this article

Fractional Calculus Extension of the Kinetic Theory of Fluids: Molecular Models of Transport within and between Phases

Author

Listed:
  • Richard L. Magin

    (Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA)

  • Ervin K. Lenzi

    (Department of Physics, University of Ponta Grossa, Ponta Grossa 84030-900, Brazil)

Abstract

The application of fractional calculus in the field of kinetic theory begins with questions raised by Bernoulli, Clausius, and Maxwell about the motion of molecules in gases and liquids. Causality, locality, and determinism underly the early work, which led to the development of statistical mechanics by Boltzmann, Gibbs, Enskog, and Chapman. However, memory and nonlocality influence the future course of molecular interactions (e.g., persistence of velocity and inelastic collisions); hence, modifications to the thermodynamic equations of state, the non-equilibrium transport equations, and the dynamics of phase transitions are needed to explain experimental measurements. In these situations, the inclusion of space- and time-fractional derivatives within the context of the continuous time random walk (CTRW) model of diffusion encodes particle jumps and trapping. Thus, we anticipate using fractional calculus to extend the classical equations of diffusion. The solutions obtained illuminate the structure and dynamics of the materials (gases and liquids) at the molecular, mesoscopic, and macroscopic time/length scales. The development of these models requires building connections between kinetic theory, physical chemistry, and applied mathematics. In this paper, we focus on the kinetic theory of gases and liquids, with particular emphasis on descriptions of phase transitions, inter-phase mixing, and the transport of mass, momentum, and energy. As an example, we combine the pressure–temperature phase diagrams of simple molecules with the corresponding anomalous diffusion phase diagram of fractional calculus. The overlap suggests links between sub- and super-diffusion and molecular motion in the liquid and the vapor phases.

Suggested Citation

  • Richard L. Magin & Ervin K. Lenzi, 2022. "Fractional Calculus Extension of the Kinetic Theory of Fluids: Molecular Models of Transport within and between Phases," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4785-:d:1005224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4785/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4785/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ervin K. Lenzi & Haroldo V. Ribeiro & Marcelo K. Lenzi & Luiz R. Evangelista & Richard L. Magin, 2022. "Fractional Diffusion with Geometric Constraints: Application to Signal Decay in Magnetic Resonance Imaging (MRI)," Mathematics, MDPI, vol. 10(3), pages 1-11, January.
    2. Richard L. Magin & Ervin K. Lenzi, 2021. "Slices of the Anomalous Phase Cube Depict Regions of Sub- and Super-Diffusion in the Fractional Diffusion Equation," Mathematics, MDPI, vol. 9(13), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbasali Koochakzadeh & Mojtaba Naderi Soorki & Aydin Azizi & Kamran Mohammadsharifi & Mohammadreza Riazat, 2023. "Delay-Dependent Stability Region for the Distributed Coordination of Delayed Fractional-Order Multi-Agent Systems," Mathematics, MDPI, vol. 11(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ervin Kaminski Lenzi & Luiz Roberto Evangelista & Luciano Rodrigues da Silva, 2023. "Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
    2. Ervin K. Lenzi & Haroldo V. Ribeiro & Marcelo K. Lenzi & Luiz R. Evangelista & Richard L. Magin, 2022. "Fractional Diffusion with Geometric Constraints: Application to Signal Decay in Magnetic Resonance Imaging (MRI)," Mathematics, MDPI, vol. 10(3), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4785-:d:1005224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.