IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4782-d1004928.html
   My bibliography  Save this article

Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring

Author

Listed:
  • Kyeongjun Lee

    (Department of Mathematics and Big Data Science, Kumoh National Institute of Technology, Gumi 39177, Gyeongbuk, Republic of Korea)

Abstract

The inverse Weibull distribution (IWD) can be applied to a various situations, including applications in reliability and medicine. In a reliability and medicine test, it is generally known that the results of test units may not be recorded. Recently, the generalized adaptive progressive hybrid censoring (GAPHC) scheme was introduced. In this paper, therefore, we consider the classical estimators (maximum likelihood estimator (MLE) and maximum product spacings estimator (MPSE)) and Bayes estimators (BayEsts) of the uncertainty measure of the IWD under GAPHC scheme. We derive the BayEsts of the uncertainty measure based on flexible (symmetrical and asymmetrical) priors. Additionally, we derive the Bayes estimators using the Tierney and Kadane approximation (TiKa) and importance sampling methods. In particular, the importance sampling method is used to obtain the credible interval for the uncertainty measure of the IWD under the GAPHC scheme. To compare the proposed estimators (classical and BayEsts), the Monte Carlo simulation method is conducted. Finally, the real dataset based on GAPHC scheme is analyzed.

Suggested Citation

  • Kyeongjun Lee, 2022. "Bayes and Maximum Likelihood Estimation of Uncertainty Measure of the Inverse Weibull Distribution under Generalized Adaptive Progressive Hybrid Censoring," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4782-:d:1004928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4782/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4782/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kyeongjun Lee & Youngseuk Cho, 2017. "Bayesian and maximum likelihood estimations of the inverted exponentiated half logistic distribution under progressive Type II censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 811-832, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    2. Mohamed A. W. Mahmoud & Mohamed G. M. Ghazal & Hossam M. M. Radwan, 2023. "Bayesian Estimation and Optimal Censoring of Inverted Generalized Linear Exponential Distribution Using Progressive First Failure Censoring," Annals of Data Science, Springer, vol. 10(2), pages 527-554, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4782-:d:1004928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.