IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4711-d1000509.html
   My bibliography  Save this article

Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model

Author

Listed:
  • Qiming Huang

    (CCS Guangzhou Plan Approval Center, Guangzhou 510235, China)

  • Junxiang Yang

    (School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China)

Abstract

The Cahn–Hilliard–Navier–Stokes model is extensively used for simulating two-phase incompressible fluid flows. With the absence of exterior force, this model satisfies the energy dissipation law. The present work focuses on developing a linear, decoupled, and energy dissipation-preserving time-marching scheme for the hydrodynamics coupled Cahn–Hilliard model. An efficient time-dependent auxiliary variable approach is first introduced to design equivalent equations. Based on equivalent forms, a BDF2-type linear scheme is constructed. In each time step, the unique solvability and the energy dissipation law can be analytically estimated. To enhance the energy stability and the consistency, we correct the modified energy by a practical relaxation technique. Using the finite difference method in space, the fully discrete scheme is described, and the numerical solutions can be separately implemented. Numerical results indicate that the proposed scheme has desired accuracy, consistency, and energy stability. Moreover, the flow-coupled phase separation, the falling droplet, and the dripping droplet are well simulated.

Suggested Citation

  • Qiming Huang & Junxiang Yang, 2022. "Linear and Energy-Stable Method with Enhanced Consistency for the Incompressible Cahn–Hilliard–Navier–Stokes Two-Phase Flow Model," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4711-:d:1000509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Chaeyoung & Jeong, Darae & Shin, Jaemin & Li, Yibao & Kim, Junseok, 2014. "A fourth-order spatial accurate and practically stable compact scheme for the Cahn–Hilliard equation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 17-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junseok Kim, 2024. "Modified Wave-Front Propagation and Dynamics Coming from Higher-Order Double-Well Potentials in the Allen–Cahn Equations," Mathematics, MDPI, vol. 12(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaeyoung Lee & Darae Jeong & Junxiang Yang & Junseok Kim, 2020. "Nonlinear Multigrid Implementation for the Two-Dimensional Cahn–Hilliard Equation," Mathematics, MDPI, vol. 8(1), pages 1-23, January.
    2. Koike, Yukito & Nakamula, Atsushi & Nishie, Akihiro & Obuse, Kiori & Sawado, Nobuyuki & Suda, Yamato & Toda, Kouichi, 2022. "Mock-integrability and stable solitary vortices," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Sinhababu, Arijit & Bhattacharya, Anirban, 2022. "A pseudo-spectral based efficient volume penalization scheme for Cahn–Hilliard equation in complex geometries," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 199(C), pages 1-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4711-:d:1000509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.