IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4682-d999293.html
   My bibliography  Save this article

Dynamical Analysis of a One- and Two-Scroll Chaotic System

Author

Listed:
  • Meng Liu

    (Jiaxing Nanyang Polytechnic Institute, Jiaxing 314003, China)

  • Zhaoyan Wu

    (School of Mathematics and Statistic, Jiangxi Normal University, Nanchang 330022, China
    Jiangxi Provincial Center of Applied Mathematics, Jiangxi Normal University, Nanchang 330022, China)

  • Xinchu Fu

    (Department of Mathematics, Shanghai University, Shanghai 200072, China)

Abstract

In this paper, a three-dimensional (3D) autonomous chaotic system is introduced and analyzed. In the system, each equation contains a quadratic crossproduct. The system possesses a chaotic attractor with a large chaotic region. Importantly, the system can generate both one- and two-scroll chaotic attractors by choosing appropriate parameters. Some of its basic dynamical properties, such as the Lyapunov exponents, Lyapunov dimension, Poincaré maps, bifurcation diagram, and the chaotic dynamical behavior are studied by adjusting different parameters. Further, an equivalent electronic circuit for the proposed chaotic system is designed according to Kirchhoff’s Law, and a corresponding response electronic circuit is also designed for identifying the unknown parameters or monitoring the changes in the system parameters. Moreover, numerical simulations are presented to perform and complement the theoretical results.

Suggested Citation

  • Meng Liu & Zhaoyan Wu & Xinchu Fu, 2022. "Dynamical Analysis of a One- and Two-Scroll Chaotic System," Mathematics, MDPI, vol. 10(24), pages 1-14, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4682-:d:999293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ran & Li, Chunbiao & Kong, Sixiao & Jiang, Yicheng & Lei, Tengfei, 2022. "A 3D memristive chaotic system with conditional symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Huang, Kuifei & Yang, Qigui, 2009. "Stability and Hopf bifurcation analysis of a new system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 567-578.
    3. Zhou, Ling & You, Zhenzhen & Tang, Yun, 2021. "A new chaotic system with nested coexisting multiple attractors and riddled basins," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García-Grimaldo, Claudio & Campos-Cantón, Eric, 2023. "Exploring a family of Bernoulli-like shift chaotic maps and its amplitude control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Yan, Shaohui & Jiang, Defeng & Cui, Yu & Zhang, Hanbing & Li, Lin & Jiang, Jiawei, 2024. "A fractional-order hyperchaotic system that is period in integer-order case and its application in a novel high-quality color image encryption algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Bo & Zhang, Ying, 2024. "Comprehensive analysis of the mechanism of sensitivity to initial conditions and fractal basins of attraction in a novel variable-distance magnetic pendulum," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    2. Hairong Lin & Chunhua Wang & Fei Yu & Jingru Sun & Sichun Du & Zekun Deng & Quanli Deng, 2023. "A Review of Chaotic Systems Based on Memristive Hopfield Neural Networks," Mathematics, MDPI, vol. 11(6), pages 1-18, March.
    3. Zhang, Fangfang & Zhang, Shuaihu & Chen, Guanrong & Li, Chunbiao & Li, Zhengfeng & Pan, Changchun, 2022. "Special attractors and dynamic transport of the hybrid-order complex Lorenz system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Liang, Bo & Hu, Chenyang & Tian, Zean & Wang, Qiao & Jian, Canling, 2023. "A 3D chaotic system with multi-transient behavior and its application in image encryption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    5. Zhang, Jianlin & Bao, Han & Gu, Jinxiang & Chen, Mo & Bao, Bocheng, 2024. "Multistability and synchronicity of memristor coupled adaptive synaptic neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    6. Yildirim, Melih, 2022. "Optical color image encryption scheme with a novel DNA encoding algorithm based on a chaotic circuit," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    7. Yan, Minxiu & Jie, Jingfeng, 2022. "Fractional-order multiwing switchable chaotic system with a wide range of parameters," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    8. Zhenggang Guo & Junjie Wen & Jun Mou, 2022. "Dynamic Analysis and DSP Implementation of Memristor Chaotic Systems with Multiple Forms of Hidden Attractors," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    9. Zhiqin Qiao & Xianyi Li, 2014. "Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(3), pages 264-283, May.
    10. Wang, Ning & Xu, Dan & Li, Ze & Xu, Quan, 2023. "A general configuration for nonlinear circuit employing current-controlled nonlinearity: Application in Chua’s circuit," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    11. Zhang, Xiaohong & Xu, Jingjing & Moshayedi, Ata Jahangir, 2024. "Design and FPGA implementation of a hyperchaotic conservative circuit with initial offset-boosting and transient transition behavior based on memcapacitor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    12. Hu, Chenyang & Wang, Qiao & Zhang, Xiefu & Tian, Zean & Wu, Xianming, 2022. "A new chaotic system with novel multiple shapes of two-channel attractors," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Wang, Zhen & Ahmadi, Atefeh & Tian, Huaigu & Jafari, Sajad & Chen, Guanrong, 2023. "Lower-dimensional simple chaotic systems with spectacular features," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    14. Lin, Hairong & Wang, Chunhua & Sun, Jingru & Zhang, Xin & Sun, Yichuang & Iu, Herbert H.C., 2023. "Memristor-coupled asymmetric neural networks: Bionic modeling, chaotic dynamics analysis and encryption application," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    15. Lai, Qiang & Chen, Zhijie, 2023. "Dynamical analysis and finite-time synchronization of grid-scroll memristive chaotic system without equilibrium," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. Lin, Hairong & Wang, Chunhua & Du, Sichun & Yao, Wei & Sun, Yichuang, 2023. "A family of memristive multibutterfly chaotic systems with multidirectional initial-based offset boosting," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    17. Michail P. Markakis & Panagiotis S. Douris, 2016. "On the Computation of Degenerate Hopf Bifurcations for -Dimensional Multiparameter Vector Fields," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2016, pages 1-12, June.
    18. Yang, Jie & Li, Chunbiao & Zhang, Qian & Zhang, Xin & Wu, Zhihao & Zhong, Haidong & Liu, Peiqiao & Liu, Zuohua & Tao, Changyuan & Huang, Keyu & Li, Jiaxing & Zheng, Guocan, 2024. "A memristive hyperchaotic oscillator with complete control and its application in the electrolysis of manganese," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4682-:d:999293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.