IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i24p4655-d997688.html
   My bibliography  Save this article

Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions

Author

Listed:
  • Ayşe Zeynep Azak

    (Faculty of Education, Mathematics and Science Education Department, Sakarya University, Sakarya 54300, Turkey)

Abstract

We have investigated new Pauli Fibonacci and Pauli Lucas quaternions by taking the components of these quaternions as Gaussian Fibonacci and Gaussian Lucas numbers, respectively. We have calculated some basic identities for these quaternions. Later, the generating functions and Binet formulas are obtained for Pauli Gaussian Fibonacci and Pauli Gaussian Lucas quaternions. Furthermore, Honsberger’s identity, Catalan’s and Cassini’s identities have been given for Pauli Gaussian Fibonacci quaternions.

Suggested Citation

  • Ayşe Zeynep Azak, 2022. "Pauli Gaussian Fibonacci and Pauli Gaussian Lucas Quaternions," Mathematics, MDPI, vol. 10(24), pages 1-10, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4655-:d:997688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/24/4655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/24/4655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halici, Serpil & Karataş, Adnan, 2017. "On a generalization for fibonacci quaternions," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 178-182.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anatriello, Giuseppina & Németh, László & Vincenzi, Giovanni, 2022. "Generalized Pascal’s triangles and associated k-Padovan-like sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 278-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:24:p:4655-:d:997688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.