IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4540-d989978.html
   My bibliography  Save this article

Some New Generalizations of Integral Inequalities for Harmonical cr -( h 1 , h 2 )-Godunova–Levin Functions and Applications

Author

Listed:
  • Tareq Saeed

    (Nonlinear Analysis and Applied Mathematics—Research Group, Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Waqar Afzal

    (Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan
    Department of Mathematics, Government College University Lahore (GCUL), Lahore 54000, Pakistan)

  • Mujahid Abbas

    (Department of Mathematics, Government College University Lahore (GCUL), Lahore 54000, Pakistan
    Department of Medical Research, China Medical University, Taichung 406040, Taiwan
    Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa)

  • Savin Treanţă

    (Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
    Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
    “Fundamental Sciences Applied in Engineering” Research Center (SFAI), University Politehnica of Bucharest, 060042 Bucharest, Romania)

  • Manuel De la Sen

    (Institute of Research and Development of Processes, Faculty of Science and Technology, Campus of Leioa, University of the Basque Country (UPV/EHU), 48940 Leioa Bizkaia, Spain)

Abstract

The interval analysis is famous for its ability to deal with uncertain data. This method is useful for addressing models with data that contain inaccuracies. Different concepts are used to handle data uncertainty in an interval analysis, including a pseudo-order relation, inclusion relation, and center–radius (cr)-order relation. This study aims to establish a connection between inequalities and a cr-order relation. In this article, we developed the Hermite–Hadamard ( H . H ) and Jensen-type inequalities using the notion of harmonical ( h 1 , h 2 ) -Godunova–Levin (GL) functions via a cr-order relation which is very novel in the literature. These new definitions have allowed us to identify many classical and novel special cases that illustrate our main findings. It is possible to unify a large number of well-known convex functions using the principle of this type of convexity. Furthermore, for the sake of checking the validity of our main findings, some nontrivial examples are given.

Suggested Citation

  • Tareq Saeed & Waqar Afzal & Mujahid Abbas & Savin Treanţă & Manuel De la Sen, 2022. "Some New Generalizations of Integral Inequalities for Harmonical cr -( h 1 , h 2 )-Godunova–Levin Functions and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4540-:d:989978
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vuk Stojiljković & Rajagopalan Ramaswamy & Ola A. Ashour Abdelnaby & Stojan Radenović, 2022. "Riemann-Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting," Mathematics, MDPI, vol. 10(19), pages 1-16, September.
    2. Yanrong An & Guoju Ye & Dafang Zhao & Wei Liu, 2019. "Hermite-Hadamard Type Inequalities for Interval ( h 1 , h 2 )-Convex Functions," Mathematics, MDPI, vol. 7(5), pages 1-9, May.
    3. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yahya Almalki & Waqar Afzal, 2023. "Some New Estimates of Hermite–Hadamard Inequalities for Harmonical cr - h -Convex Functions via Generalized Fractional Integral Operator on Set-Valued Mappings," Mathematics, MDPI, vol. 11(19), pages 1-21, September.
    2. Tareq Saeed & Waqar Afzal & Khurram Shabbir & Savin Treanţă & Manuel De la Sen, 2022. "Some Novel Estimates of Hermite–Hadamard and Jensen Type Inequalities for ( h 1 , h 2 )-Convex Functions Pertaining to Total Order Relation," Mathematics, MDPI, vol. 10(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tareq Saeed & Waqar Afzal & Khurram Shabbir & Savin Treanţă & Manuel De la Sen, 2022. "Some Novel Estimates of Hermite–Hadamard and Jensen Type Inequalities for ( h 1 , h 2 )-Convex Functions Pertaining to Total Order Relation," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    2. Muhammad Bilal Khan & Gustavo Santos-García & Hatim Ghazi Zaini & Savin Treanță & Mohamed S. Soliman, 2022. "Some New Concepts Related to Integral Operators and Inequalities on Coordinates in Fuzzy Fractional Calculus," Mathematics, MDPI, vol. 10(4), pages 1-26, February.
    3. Muhammad Bilal Khan & Savin Treanțǎ & Mohamed S. Soliman & Kamsing Nonlaopon & Hatim Ghazi Zaini, 2022. "Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings," Mathematics, MDPI, vol. 10(4), pages 1-15, February.
    4. Muhammad Bilal Khan & Hakeem A. Othman & Aleksandr Rakhmangulov & Mohamed S. Soliman & Alia M. Alzubaidi, 2023. "Discussion on Fuzzy Integral Inequalities via Aumann Integrable Convex Fuzzy-Number Valued Mappings over Fuzzy Inclusion Relation," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    5. Muhammad Bilal Khan & Hakeem A. Othman & Michael Gr. Voskoglou & Lazim Abdullah & Alia M. Alzubaidi, 2023. "Some Certain Fuzzy Aumann Integral Inequalities for Generalized Convexity via Fuzzy Number Valued Mappings," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    6. Waqar Afzal & Alina Alb Lupaş & Khurram Shabbir, 2022. "Hermite–Hadamard and Jensen-Type Inequalities for Harmonical ( h 1 , h 2 )-Godunova–Levin Interval-Valued Functions," Mathematics, MDPI, vol. 10(16), pages 1-16, August.
    7. Malik, Muhammad Faizan & Chang, Ching-Lung & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa kausar & Shu, Chi-Min & Raja, Muhammad Asif Zahoor, 2023. "Swarming intelligence heuristics for fractional nonlinear autoregressive exogenous noise systems," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Tareq Saeed & Muhammad Bilal Khan & Savin Treanță & Hamed H. Alsulami & Mohammed Sh. Alhodaly, 2023. "Study of Log Convex Mappings in Fuzzy Aunnam Calculus via Fuzzy Inclusion Relation over Fuzzy-Number Space," Mathematics, MDPI, vol. 11(9), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4540-:d:989978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.