IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4412-d981296.html
   My bibliography  Save this article

Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys

Author

Listed:
  • Miroslav Frost

    (Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, CZ-18200 Prague, Czech Republic)

  • Jan Valdman

    (Institute of Information Theory and Automation, Czech Academy of Sciences, Pod Vodárenskou věží 4, CZ-18200 Prague, Czech Republic
    Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, CZ-16000 Prague, Czech Republic)

Abstract

The incremental energy minimization principle provides a compact variational formulation for evolutionary boundary problems based on constitutive models of rate-independent dissipative solids. In this work, we develop and implement a versatile computational tool for the resolution of these problems via the finite element method (FEM). The implementation is coded in the MATLAB programming language and benefits from vector operations, allowing all local energy contributions to be evaluated over all degrees of freedom at once. The monolithic solution scheme combined with gradient-based optimization methods is applied to the inherently nonlinear, non-smooth convex minimization problem. An advanced constitutive model for shape memory alloys, which features a strongly coupled rate-independent dissipation function and several constraints on internal variables, is implemented as a benchmark example. Numerical simulations demonstrate the capabilities of the computational tool, which is suited for the rapid development and testing of advanced constitutive laws of rate-independent dissipative solids.

Suggested Citation

  • Miroslav Frost & Jan Valdman, 2022. "Vectorized MATLAB Implementation of the Incremental Minimization Principle for Rate-Independent Dissipative Solids Using FEM: A Constitutive Model of Shape Memory Alloys," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4412-:d:981296
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moskovka, Alexej & Valdman, Jan, 2022. "Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: Nodal elements," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    2. Anjam, I. & Valdman, J., 2015. "Fast MATLAB assembly of FEM matrices in 2D and 3D: Edge elements," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 252-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-Ran Li & Xin-Hui Shao & Shi-Yu Li, 2021. "New Preconditioned Iteration Method Solving the Special Linear System from the PDE-Constrained Optimal Control Problem," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
    2. Moskovka, Alexej & Valdman, Jan, 2022. "Fast MATLAB evaluation of nonlinear energies using FEM in 2D and 3D: Nodal elements," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    3. Innerberger, Michael & Praetorius, Dirk, 2023. "MooAFEM: An object oriented Matlab code for higher-order adaptive FEM for (nonlinear) elliptic PDEs," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    4. Voet, Yannis, 2023. "On the fast assemblage of finite element matrices with application to nonlinear heat transfer problems," Applied Mathematics and Computation, Elsevier, vol. 436(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4412-:d:981296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.