IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4396-d980002.html
   My bibliography  Save this article

Generation of Synthetic Data for the Analysis of the Physical Stability of Tailing Dams through Artificial Intelligence

Author

Listed:
  • Fernando Pacheco

    (Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Gabriel Hermosilla

    (Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Osvaldo Piña

    (Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Gabriel Villavicencio

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Héctor Allende-Cid

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2241, Chile)

  • Juan Palma

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Pamela Valenzuela

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • José García

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Alex Carpanetti

    (Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2162, Chile)

  • Vinicius Minatogawa

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil, Valparaíso 2147, Chile)

  • Gonzalo Suazo

    (Departamento de Obras Civiles, Escuela de Ingeniería Civil, Universidad Técnica Federico Santa María, Avenida España, Valparaíso 1680, Chile)

  • Andrés León

    (Servicio Nacional de Geología y Minería, Avenida Santa María, Santiago 0104, Chile)

  • Ricardo López

    (Servicio Nacional de Geología y Minería, Avenida Santa María, Santiago 0104, Chile)

  • Gullibert Novoa

    (Servicio Nacional de Geología y Minería, Avenida Santa María, Santiago 0104, Chile)

Abstract

In this research, we address the problem of evaluating physical stability (PS) to close tailings dams (TD) from medium-sized Chilean mining using artificial intelligence (AI) algorithms. The PS can be analyzed through the study of critical variables of the TD that allow estimating different potential failure mechanisms (PFM): seismic liquefaction, slope instability, static liquefaction, overtopping, and piping, which may occur in this type of tailings storage facilities in a seismically active country such as Chile. Thus, this article proposes the use of four machine learning algorithms, namely random forest (RF), support vector machine (SVM), artificial neural networks (ANN), and extreme gradient boosting (XGBoost), to estimate five possible PFM. In addition, due to the scarcity of data to train the algorithms, the use of generative adversarial networks (GAN) is proposed to create synthetic data and increase the database used. Therefore, the novelty of this article consists in estimating the PFM for TD and generating synthetic data through the GAN. The results show that, when using the GAN, the result obtained by the ML models increases the F1-score metric by 30 percentage points, obtaining results of 97.4%, 96.3%, 96.7%, and 97.3% for RF, SVM, ANN, and XGBoost, respectively.

Suggested Citation

  • Fernando Pacheco & Gabriel Hermosilla & Osvaldo Piña & Gabriel Villavicencio & Héctor Allende-Cid & Juan Palma & Pamela Valenzuela & José García & Alex Carpanetti & Vinicius Minatogawa & Gonzalo Suazo, 2022. "Generation of Synthetic Data for the Analysis of the Physical Stability of Tailing Dams through Artificial Intelligence," Mathematics, MDPI, vol. 10(23), pages 1-15, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4396-:d:980002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4396/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4396-:d:980002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.