IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4378-d979097.html
   My bibliography  Save this article

Taxonomy-Aware Prototypical Network for Few-Shot Relation Extraction

Author

Listed:
  • Mengru Wang

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)

  • Jianming Zheng

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)

  • Honghui Chen

    (Science and Technology on Information Systems Engineering Laboratory, National University of Defense Technology, Changsha 410073, China)

Abstract

Relation extraction aims to predict the relation triple between the tail entity and head entity in a given text. A large body of works adopt meta-learning to address the few-shot issue faced by relation extraction, where each relation category only contains few labeled data for demonstration. Despite promising results achieved by existing meta-learning methods, these methods still struggle to distinguish the subtle differences between different relations with similar expressions. We argue this is largely owing to that these methods cannot capture unbiased and discriminative features in the very few-shot scenario. For alleviating the above problems, we propose a taxonomy-aware prototype network, which consists of a category-aware calibration module and a task-aware training strategy module. The former implicitly and explicitly calibrates the representation of prototype to become sufficiently unbiased and discriminative. The latter balances the weight between easy and hard instances, which enables our proposal to focus on data with more information during the training stage. Finally, comprehensive experiments are conducted on four typical meta tasks. Furthermore, our proposal presents superiority over the competitive baselines with an improvement of 3.30% in terms of average accuracy.

Suggested Citation

  • Mengru Wang & Jianming Zheng & Honghui Chen, 2022. "Taxonomy-Aware Prototypical Network for Few-Shot Relation Extraction," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4378-:d:979097
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haixia Zheng & Yu Zhou & Xin Huang, 2022. "Improving Cancer Metastasis Detection via Effective Contrastive Learning," Mathematics, MDPI, vol. 10(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Laria & Line H. Clemmensen & Bjarne K. Ersbøll & David Delgado-Gómez, 2022. "A Generalized Linear Joint Trained Framework for Semi-Supervised Learning of Sparse Features," Mathematics, MDPI, vol. 10(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4378-:d:979097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.