Author
Listed:
- Aleksei Vakhnin
(Department of System Analysis and Operations Research, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)
- Evgenii Sopov
(Department of System Analysis and Operations Research, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)
- Eugene Semenkin
(Department of System Analysis and Operations Research, Reshetnev Siberian State University of Science and Technology, 660037 Krasnoyarsk, Russia)
Abstract
Modern computational mathematics and informatics for Digital Environments deal with the high dimensionality when designing and optimizing models for various real-world phenomena. Large-scale global black-box optimization (LSGO) is still a hard problem for search metaheuristics, including bio-inspired algorithms. Such optimization problems are usually extremely multi-modal, and require significant computing resources for discovering and converging to the global optimum. The majority of state-of-the-art LSGO algorithms are based on problem decomposition with the cooperative co-evolution (CC) approach, which divides the search space into a set of lower dimensional subspaces (or subcomponents), which are expected to be easier to explore independently by an optimization algorithm. The question of the choice of the decomposition method remains open, and an adaptive decomposition looks more promising. As we can see from the most recent LSGO competitions, winner-approaches are focused on modifying advanced DE algorithms through integrating them with local search techniques. In this study, an approach that combines multiple ideas from state-of-the-art algorithms and implements Coordination of Self-adaptive Cooperative Co-evolution algorithms with Local Search (COSACC-LS1) is proposed. The self-adaptation method tunes both the structure of the complete approach and the parameters of each algorithm in the cooperation. The performance of COSACC-LS1 has been investigated using the CEC LSGO 2013 benchmark and the experimental results has been compared with leading LSGO approaches. The main contribution of the study is a new self-adaptive approach that is preferable for solving hard real-world problems because it is not overfitted with the LSGO benchmark due to self-adaptation during the search process instead of a manual benchmark-specific fine-tuning.
Suggested Citation
Aleksei Vakhnin & Evgenii Sopov & Eugene Semenkin, 2022.
"On Improving Adaptive Problem Decomposition Using Differential Evolution for Large-Scale Optimization Problems,"
Mathematics, MDPI, vol. 10(22), pages 1-28, November.
Handle:
RePEc:gam:jmathe:v:10:y:2022:i:22:p:4297-:d:974846
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4297-:d:974846. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.