IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i22p4247-d971442.html
   My bibliography  Save this article

Numerical Coefficient Reconstruction of Time-Depending Integer- and Fractional-Order SIR Models for Economic Analysis of COVID-19

Author

Listed:
  • Slavi Georgiev

    (Department of Informational Modeling, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
    Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse, 7004 Ruse, Bulgaria
    Current address: Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse 8 Studentska Str., 7004 Ruse, Bulgaria.)

  • Lubin Vulkov

    (Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse, 7004 Ruse, Bulgaria
    Current address: Department of Applied Mathematics and Statistics, Faculty of Natural Sciences and Education, University of Ruse 8 Studentska Str., 7004 Ruse, Bulgaria.)

Abstract

In the present work, a fractional temporal SIR model is considered. The total population is divided into three compartments—susceptible, infected and removed individuals. It generalizes the classical SIR model and consists of three coupled time-fractional ordinary differential equations (ODEs). The fractional derivative is introduced to account for the subdiffusion process of confirmed, cured and deceased people dynamics. Although relatively basic, the model is robust and captures the real dynamics, helped by the memory property of the fractional system. In the paper, the issue of an adequate model reconstruction is addressed, and a coefficient identification inverse problem is solved; in particular, the transition and recovering rates, varying in time, are recovered. A least-squares cost functional is minimized for solving the problem. The time-dependent parameters are reconstructed with an iterative predictor–corrector algorithm. Its application is demonstrated via tests with synthetic and real data. What is more, an approach for economic impact assessment is proposed.

Suggested Citation

  • Slavi Georgiev & Lubin Vulkov, 2022. "Numerical Coefficient Reconstruction of Time-Depending Integer- and Fractional-Order SIR Models for Economic Analysis of COVID-19," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4247-:d:971442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/22/4247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/22/4247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Noureddine Djenina & Adel Ouannas & Iqbal M. Batiha & Giuseppe Grassi & Taki-Eddine Oussaeif & Shaher Momani, 2022. "A Novel Fractional-Order Discrete SIR Model for Predicting COVID-19 Behavior," Mathematics, MDPI, vol. 10(13), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isra Al-Shbeil & Noureddine Djenina & Ali Jaradat & Abdallah Al-Husban & Adel Ouannas & Giuseppe Grassi, 2023. "A New COVID-19 Pandemic Model including the Compartment of Vaccinated Individuals: Global Stability of the Disease-Free Fixed Point," Mathematics, MDPI, vol. 11(3), pages 1-15, January.
    2. Abdallah Al-Husban & Noureddine Djenina & Rania Saadeh & Adel Ouannas & Giuseppe Grassi, 2023. "A New Incommensurate Fractional-Order COVID 19: Modelling and Dynamical Analysis," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    3. Joshi, Divya D. & Bhalekar, Sachin & Gade, Prashant M., 2023. "Controlling fractional difference equations using feedback," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    4. Yousef Alnafisah & Moustafa El-Shahed, 2022. "Stochastic Analysis of a Hantavirus Infection Model," Mathematics, MDPI, vol. 10(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:22:p:4247-:d:971442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.