IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i21p4098-d961776.html
   My bibliography  Save this article

Optimal Control of Degrading Units through Threshold-Based Control Policies

Author

Listed:
  • Dmitry Efrosinin

    (Institute of Stochastics, Johannes Kepler University Linz, 4040 Linz, Austria
    Department of Information Technologies, Faculty of Mathematics and Natural Sciences, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia)

  • Natalia Stepanova

    (Laboratory N17, Trapeznikov Institute of Control Sciences of RAS, 117997 Moscow, Russia)

Abstract

Optimal control problems are applied to a variety of dynamical systems with a random law of motion. In this paper we show that the random degradation processes defined on a discrete set of intermediate degradation states are also suitable for formulating and solving optimization problems and finding an appropriate optimal control policy. Two degradation models are considered in this paper: with random time to an instantaneous failure and with random time to a preventive maintenance. In both cases, a threshold-based control policy with two thresholds levels defining the signal state, after which an instantaneous failure or preventive maintenance can occur after a random time, and a maximum number of intermediate degradation states is applied. The optimal control problem is mainly solved in a steady-state regime. The main loss functional is formulated as the average cost per unit of time for a given cost structure. The Markov degradation models are used for numerical calculations of the optimal threshold policy and reliability function of the studied degrading units.

Suggested Citation

  • Dmitry Efrosinin & Natalia Stepanova, 2022. "Optimal Control of Degrading Units through Threshold-Based Control Policies," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4098-:d:961776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/21/4098/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/21/4098/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Giorgio & Maurizio Guida & Gianpaolo Pulcini, 2011. "An age- and state-dependent Markov model for degradation processes," IISE Transactions, Taylor & Francis Journals, vol. 43(9), pages 621-632.
    2. Singpurwalla, Nozer D., 2006. "The Hazard Potential: Introduction and Overview," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1705-1717, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    2. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    4. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Giorgio, Massimiliano & Pulcini, Gianpaolo, 2018. "A new state-dependent degradation process and related model misidentification problems," European Journal of Operational Research, Elsevier, vol. 267(3), pages 1027-1038.
    7. Che, Haiyang & Zeng, Shengkui & Zhao, Yingzhi & Guo, Jianbin, 2024. "Reliability assessment of multi-state weighted k-out-of-n man-machine systems considering dependent machine deterioration and human fatigue," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    9. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    10. Gregory Levitin & Maxim Finkelstein, 2017. "A new stress–strength model for systems subject to stochastic shocks," Journal of Risk and Reliability, , vol. 231(2), pages 172-179, April.
    11. Gobbi, Fabio & Kolev, Nikolai & Mulinacci, Sabrina, 2021. "Ryu-type extended Marshall-Olkin model with implicit shocks and joint life insurance applications," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 342-358.
    12. Wang, Jia & Bai, Guanghan & Li, Zhigang & Zuo, Ming J., 2020. "A general discrete degradation model with fatal shocks and age- and state-dependent nonfatal shocks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Guida, M. & Pulcini, G., 2013. "The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 72-79.
    14. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    16. Lin, X. & Basten, R.J.I. & Kranenburg, A.A. & van Houtum, G.J., 2017. "Condition based spare parts supply," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 240-248.
    17. Peng, Hao & van Houtum, Geert-Jan, 2016. "Joint optimization of condition-based maintenance and production lot-sizing," European Journal of Operational Research, Elsevier, vol. 253(1), pages 94-107.
    18. Che, Haiyang & Zeng, Shengkui & Guo, Jianbin, 2019. "Reliability assessment of man-machine systems subject to mutually dependent machine degradation and human errors," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    19. Zhang, Aibo & Wu, Shengnan & Fan, Dongming & Xie, Min & Cai, Baoping & Liu, Yiliu, 2022. "Adaptive testing policy for multi-state systems with application to the degrading final elements in safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Compare, M. & Baraldi, P. & Bani, I. & Zio, E. & Mc Donnell, D., 2017. "Development of a Bayesian multi-state degradation model for up-to-date reliability estimations of working industrial components," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 25-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:21:p:4098-:d:961776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.