IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3896-d948029.html
   My bibliography  Save this article

XAI for Churn Prediction in B2B Models: A Use Case in an Enterprise Software Company

Author

Listed:
  • Gabriel Marín Díaz

    (Faculty of Statistics, Complutense University, Puerta de Hierro, 28040 Madrid, Spain)

  • José Javier Galán

    (Faculty of Statistics, Complutense University, Puerta de Hierro, 28040 Madrid, Spain)

  • Ramón Alberto Carrasco

    (Faculty of Statistics, Complutense University, Puerta de Hierro, 28040 Madrid, Spain)

Abstract

The literature related to Artificial Intelligence (AI) models and customer churn prediction is extensive and rich in Business to Customer (B2C) environments; however, research in Business to Business (B2B) environments is not sufficiently addressed. Customer churn in the business environment and more so in a B2B context is critical, as the impact on turnover is generally greater than in B2C environments. On the other hand, the data used in the context of this paper point to the importance of the relationship between customer and brand through the Contact Center. Therefore, the recency, frequency, importance and duration (RFID) model used to obtain the customer’s assessment from the point of view of their interactions with the Contact Center is a novelty and an additional source of information to traditional models based on purchase transactions, recency, frequency, and monetary (RFM). The objective of this work consists of the design of a methodological process that contributes to analyzing the explainability of AI algorithm predictions, Explainable Artificial Intelligence (XAI), for which we analyze the binary target variable abandonment in a B2B environment, considering the relationships that the partner (customer) has with the Contact Center, and focusing on a business software distribution company. The model can be generalized to any environment in which classification or regression algorithms are required.

Suggested Citation

  • Gabriel Marín Díaz & José Javier Galán & Ramón Alberto Carrasco, 2022. "XAI for Churn Prediction in B2B Models: A Use Case in an Enterprise Software Company," Mathematics, MDPI, vol. 10(20), pages 1-29, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3896-:d:948029
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gabriel Marín Díaz & Ramón Alberto Carrasco & Daniel Gómez, 2021. "RFID: A Fuzzy Linguistic Model to Manage Customers from the Perspective of Their Interactions with the Contact Center," Mathematics, MDPI, vol. 9(19), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leticia Monje & Ramón A. Carrasco & Carlos Rosado & Manuel Sánchez-Montañés, 2022. "Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    2. Honggang Wang & Ruixue Yu & Ruoyu Pan & Peidong Pei & Zhao Han & Nanfeng Zhang & Jingfeng Yang, 2022. "An Adaptive Control Algorithm Based on Q-Learning for UHF Passive RFID Robots in Dynamic Scenarios," Mathematics, MDPI, vol. 10(19), pages 1-17, September.

    More about this item

    Keywords

    churn detection; XAI; interpretability; B2B; RFM; RFID;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3896-:d:948029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.