IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3765-d940539.html
   My bibliography  Save this article

A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems

Author

Listed:
  • Honghua Rao

    (School of Information Engineering, Sanming University, Sanming 365004, China)

  • Heming Jia

    (School of Information Engineering, Sanming University, Sanming 365004, China)

  • Di Wu

    (School of Education and Music, Sanming University, Sanming 365004, China)

  • Changsheng Wen

    (School of Information Engineering, Sanming University, Sanming 365004, China)

  • Shanglong Li

    (School of Information Engineering, Sanming University, Sanming 365004, China)

  • Qingxin Liu

    (School of Computer Science and Technology, Hainan University, Haikou 570228, China)

  • Laith Abualigah

    (Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
    Faculty of Information Technology, Middle East University, Amman 11831, Jordan)

Abstract

The group teaching optimization algorithm (GTOA) is a meta heuristic optimization algorithm simulating the group teaching mechanism. The inspiration of GTOA comes from the group teaching mechanism. Each student will learn the knowledge obtained in the teacher phase, but each student’s autonomy is weak. This paper considers that each student has different learning motivations. Elite students have strong self-learning ability, while ordinary students have general self-learning motivation. To solve this problem, this paper proposes a learning motivation strategy and adds random opposition-based learning and restart strategy to enhance the global performance of the optimization algorithm (MGTOA). In order to verify the optimization effect of MGTOA, 23 standard benchmark functions and 30 test functions of IEEE Evolutionary Computation 2014 (CEC2014) are adopted to verify the performance of the proposed MGTOA. In addition, MGTOA is also applied to six engineering problems for practical testing and achieved good results.

Suggested Citation

  • Honghua Rao & Heming Jia & Di Wu & Changsheng Wen & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "A Modified Group Teaching Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(20), pages 1-36, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3765-:d:940539
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changsheng Wen & Heming Jia & Di Wu & Honghua Rao & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem," Mathematics, MDPI, vol. 10(19), pages 1-36, October.
    2. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah & Yuxiang Liu, 2022. "A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 10(9), pages 1-30, May.
    3. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm for Global Optimization and Multilevel Thresholding Image Segmentation," Mathematics, MDPI, vol. 10(7), pages 1-42, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    2. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    3. Di Wu & Honghua Rao & Changsheng Wen & Heming Jia & Qingxin Liu & Laith Abualigah, 2022. "Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(22), pages 1-41, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Abualigah & Ali Diabat & Raed Abu Zitar, 2022. "Orthogonal Learning Rosenbrock’s Direct Rotation with the Gazelle Optimization Algorithm for Global Optimization," Mathematics, MDPI, vol. 10(23), pages 1-42, November.
    2. Di Wu & Honghua Rao & Changsheng Wen & Heming Jia & Qingxin Liu & Laith Abualigah, 2022. "Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(22), pages 1-41, November.
    3. Alma Y. Alanis, 2022. "Bioinspired Intelligent Algorithms for Optimization, Modeling and Control: Theory and Applications," Mathematics, MDPI, vol. 10(13), pages 1-2, July.
    4. Changsheng Wen & Heming Jia & Di Wu & Honghua Rao & Shanglong Li & Qingxin Liu & Laith Abualigah, 2022. "Modified Remora Optimization Algorithm with Multistrategies for Global Optimization Problem," Mathematics, MDPI, vol. 10(19), pages 1-36, October.
    5. Shuang Wang & Abdelazim G. Hussien & Heming Jia & Laith Abualigah & Rong Zheng, 2022. "Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(10), pages 1-32, May.
    6. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah & Yuxiang Liu, 2022. "A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 10(9), pages 1-30, May.
    7. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Dwarf Mongoose Optimization Metaheuristics for Autoregressive Exogenous Model Identification," Mathematics, MDPI, vol. 10(20), pages 1-21, October.
    8. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    9. Dejan G. Ćirić & Zoran H. Perić & Nikola J. Vučić & Miljan P. Miletić, 2023. "Analysis of Industrial Product Sound by Applying Image Similarity Measures," Mathematics, MDPI, vol. 11(3), pages 1-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3765-:d:940539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.