Author
Listed:
- Juan-Jose Cardenas-Cornejo
(Electronics Engineering Department, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
These authors contributed equally to this work.)
- Mario-Alberto Ibarra-Manzano
(Electronics Engineering Department, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
These authors contributed equally to this work.)
- Daniel-Alberto Razo-Medina
(Electronics Engineering Department, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
These authors contributed equally to this work.)
- Dora-Luz Almanza-Ojeda
(Electronics Engineering Department, DICIS, University of Guanajuato, Carr. Salamanca-Valle de Santiago KM. 3.5 + 1.8 Km., Salamanca 36885, Mexico
These authors contributed equally to this work.)
Abstract
Color image segmentation divides the image into areas that represent different objects and focus points. One of the biggest problems in color image segmentation is the lack of homogeneity in the color of real urban images, which generates areas of over-segmentation when traditional color segmentation techniques are used. This article describes an approach to detecting and classifying objects in urban environments based on a new chromatic segmentation to locate focus points. Based on components a and b on the CIELab space, we define a chromatic map on the complex space to determine the highest threshold values by comparing neighboring blocks and thus divide various areas of the image automatically. Even though thresholds can result in broad segmentation areas, they suffice to locate centroids of patches on the color image that are then classified using a convolutional neural network (CNN). Thus, this broadly segmented image helps to crop only outlying areas instead of classifying the entire image. The CNN is trained to use six classes based on the patches drawn from the database of reference images from urban environments. Experimental results show a high score for classification accuracy that confirms the contribution of this segmentation approach.
Suggested Citation
Juan-Jose Cardenas-Cornejo & Mario-Alberto Ibarra-Manzano & Daniel-Alberto Razo-Medina & Dora-Luz Almanza-Ojeda, 2022.
"Complex Color Space Segmentation to Classify Objects in Urban Environments,"
Mathematics, MDPI, vol. 10(20), pages 1-18, October.
Handle:
RePEc:gam:jmathe:v:10:y:2022:i:20:p:3752-:d:940112
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3752-:d:940112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.