IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3751-d940005.html
   My bibliography  Save this article

Model Fusion from Unauthorized Clients in Federated Learning

Author

Listed:
  • Boyuan Li

    (School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Shengbo Chen

    (School of Computer and Information Engineering, Henan University, Kaifeng 475001, China)

  • Keping Yu

    (Global Information and Telecommunication Institute, Waseda University, Tokyo 169-8050, Japan)

Abstract

A key feature of federated learning (FL) is that not all clients participate in every communication epoch of each global model update. The rationality for such partial client selection is largely to reduce the communication overhead. However, in many cases, the unselected clients are still able to compute their local model updates, but are not “authorized” to upload the updates in this round, which is a waste of computation capacity. In this work, we propose an algorithm FedUmf —Federated Learning with Unauthorized Model Fusion that utilizes the model updates from the unselected clients. More specifically, a client computes the stochastic gradient descent (SGD) even if it is not selected to upload in the current communication epoch. Then, if this client is selected in the next round, it non-trivially merges the outdated SGD stored in the previous round with the current global model before it starts to compute the new local model. A rigorous convergence analysis is established for FedUmf , which shows a faster convergence rate than the vanilla FedAvg . Comprehensive numerical experiments on several standard classification tasks demonstrate its advantages, which corroborate the theoretical results.

Suggested Citation

  • Boyuan Li & Shengbo Chen & Keping Yu, 2022. "Model Fusion from Unauthorized Clients in Federated Learning," Mathematics, MDPI, vol. 10(20), pages 1-31, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3751-:d:940005
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3751/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3751-:d:940005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.