IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i20p3730-d938857.html
   My bibliography  Save this article

Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions

Author

Listed:
  • Hari Mohan Srivastava

    (Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
    Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, AZ1007 Baku, Azerbaijan
    Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy)

Abstract

In this invited survey-cum-expository review article, we present a brief and comprehensive account of some general families of linear and bilinear generating functions which are associated with orthogonal polynomials and such other higher transcendental functions as (for example) hypergeometric functions and hypergeometric polynomials in one, two and more variables. Many of the results as well as the methods and techniques used for their derivations, which are presented here, are intended to provide incentive and motivation for further research on the subject investigated in this article.

Suggested Citation

  • Hari Mohan Srivastava, 2022. "Some Families of Generating Functions Associated with Orthogonal Polynomials and Other Higher Transcendental Functions," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3730-:d:938857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/20/3730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/20/3730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Emilio Ricci & Rekha Srivastava, 2022. "A Note on the Laguerre-Type Appell and Hypergeometric Polynomials," Mathematics, MDPI, vol. 10(11), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anton E. Kulagin & Alexander V. Shapovalov, 2023. "Analytical Description of the Diffusion in a Cellular Automaton with the Margolus Neighbourhood in Terms of the Two-Dimensional Markov Chain," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    2. Hari Mohan Srivastava, 2022. "Higher Transcendental Functions and Their Multi-Disciplinary Applications," Mathematics, MDPI, vol. 10(24), pages 1-3, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Özat, Zeynep & Çekim, Bayram & Ali Özarslan, Mehmet, 2023. "Δω-Laguerre based Appell polynomials and their properties associated with some special polynomials," Applied Mathematics and Computation, Elsevier, vol. 459(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:20:p:3730-:d:938857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.