IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i1p147-d717562.html
   My bibliography  Save this article

Sufficient Conditions for Some Stochastic Orders of Discrete Random Variables with Applications in Reliability

Author

Listed:
  • Félix Belzunce

    (Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain)

  • Carolina Martínez-Riquelme

    (Departamento de Estadística e Investigación Operativa, Facultad de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain)

  • Magdalena Pereda

    (Collège Sciences et Technologies pour l’Energie et l’Environnement (STEE), Université de Pau et des Pays de L’Adour, Avenue de l’Université, CEDEX, BP576-64012 Pau, France)

Abstract

In this paper we focus on providing sufficient conditions for some well-known stochastic orders in reliability but dealing with the discrete versions of them, filling a gap in the literature. In particular, we find conditions based on the unimodality of the likelihood ratio for the comparison in some stochastic orders of two discrete random variables. These results have interest in comparing discrete random variables because the sufficient conditions are easy to check when there are no closed expressions for the survival functions, which occurs in many cases. In addition, the results are applied to compare several parametric families of discrete distributions.

Suggested Citation

  • Félix Belzunce & Carolina Martínez-Riquelme & Magdalena Pereda, 2022. "Sufficient Conditions for Some Stochastic Orders of Discrete Random Variables with Applications in Reliability," Mathematics, MDPI, vol. 10(1), pages 1-15, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:147-:d:717562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Arriaza & Félix Belzunce & Carolina Martínez-Riquelme, 2021. "Sufficient Conditions for some Transform Orders Based on the Quantile Density Ratio," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 29-52, March.
    2. Félix Belzunce & Carolina Martínez-Riquelme, 2019. "On the unimodality of the likelihood ratio with applications," Statistical Papers, Springer, vol. 60(1), pages 223-237, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Germán Badía & María Dolores Berrade, 2022. "On the Residual Lifetime and Inactivity Time in Mixtures," Mathematics, MDPI, vol. 10(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:1:p:147-:d:717562. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.