IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3717-d938366.html
   My bibliography  Save this article

Convergence of Uniformity Criteria and the Application in Numerical Integration

Author

Listed:
  • Yang Huang

    (School of Statistics and Data Science, Nankai University, Tianjin 300071, China)

  • Yongdao Zhou

    (School of Statistics and Data Science, Nankai University, Tianjin 300071, China)

Abstract

Quasi-Monte Carlo (QMC) methods have been successfully used for the estimation of numerical integrations arising in many applications. In most QMC methods, low-discrepancy sequences have been used, such as digital nets and lattice rules. In this paper, we derive the convergence rates of order of some improved discrepancies, such as centered L 2 -discrepancy, wrap-around L 2 -discrepancy, and mixture discrepancy, and propose a randomized QMC method based on a uniform design constructed by the mixture discrepancy and Baker’s transformation. Moreover, the numerical results show that the proposed method has better approximation than the Monte Carlo method and many other QMC methods, especially when the number of dimensions is less than 10.

Suggested Citation

  • Yang Huang & Yongdao Zhou, 2022. "Convergence of Uniformity Criteria and the Application in Numerical Integration," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3717-:d:938366
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred J. Hickernell, 2002. "Uniform designs limit aliasing," Biometrika, Biometrika Trust, vol. 89(4), pages 893-904, December.
    2. Pierre L’Ecuyer & Christiane Lemieux, 2002. "Recent Advances in Randomized Quasi-Monte Carlo Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 419-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Chatterjee, Kashinath & Qin, Hong, 2008. "A new look at discrete discrepancy," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2988-2991, December.
    3. Hong Qin & Na Zou & Kashinath Chatterjee, 2009. "Connection between uniformity and minimum moment aberration," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 79-88, June.
    4. Fang Pang & Min-Qian Liu, 2012. "A note on connections among criteria for asymmetrical factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(1), pages 23-32, January.
    5. Mingyao Ai & Shuyuan He, 2006. "Interaction balance for symmetrical factorial designs with generalized minimum aberration," Statistical Papers, Springer, vol. 47(1), pages 125-135, January.
    6. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    7. Pierre L’Ecuyer, 2009. "Quasi-Monte Carlo methods with applications in finance," Finance and Stochastics, Springer, vol. 13(3), pages 307-349, September.
    8. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    9. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    10. Li, Peng-Fei & Chen, Bao-Jiang & Liu, Min-Qian & Zhang, Run-Chu, 2006. "A note on minimum aberration and clear criteria," Statistics & Probability Letters, Elsevier, vol. 76(10), pages 1007-1011, May.
    11. Pierre L'Ecuyer & Christian Lécot & Bruno Tuffin, 2008. "A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains," Operations Research, INFORMS, vol. 56(4), pages 958-975, August.
    12. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    13. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    14. Bochuan Jiang & Fei Wang & Yaping Wang, 2022. "Construction of uniform mixed-level designs through level permutations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(6), pages 753-770, August.
    15. Chen, Jie & Liu, Min-Qian, 2008. "Optimal mixed-level supersaturated design with general number of runs," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2496-2502, October.
    16. Baldeaux Jan, 2008. "Quasi-Monte Carlo methods for the Kou model," Monte Carlo Methods and Applications, De Gruyter, vol. 14(4), pages 281-302, January.
    17. Bastin, Fabian & Cirillo, Cinzia & Toint, Philippe L., 2006. "Application of an adaptive Monte Carlo algorithm to mixed logit estimation," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 577-593, August.
    18. Yang, Xue & Chen, Hao & Liu, Min-Qian, 2014. "Resolvable orthogonal array-based uniform sliced Latin hypercube designs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 108-115.
    19. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    20. L’Ecuyer, P. & Sanvido, C., 2010. "Coupling from the past with randomized quasi-Monte Carlo," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 476-489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3717-:d:938366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.