IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3666-d934880.html
   My bibliography  Save this article

A Reverse Positional Encoding Multi-Head Attention-Based Neural Machine Translation Model for Arabic Dialects

Author

Listed:
  • Laith H. Baniata

    (School of Computing, Gachon University, Seongnam 13120, Korea)

  • Sangwoo Kang

    (School of Computing, Gachon University, Seongnam 13120, Korea)

  • Isaac. K. E. Ampomah

    (Shell Center, 2 York Road, London SE1 7LZ, UK)

Abstract

Languages with a grammatical structure that have a free order for words, such as Arabic dialects, are considered a challenge for neural machine translation (NMT) models because of the attached suffixes, affixes, and out-of-vocabulary words. This paper presents a new reverse positional encoding mechanism for a multi-head attention (MHA) neural machine translation (MT) model to translate from right-to-left texts such as Arabic dialects (ADs) to modern standard Arabic (MSA). The proposed model depends on an MHA mechanism that has been suggested recently. The utilization of the new reverse positional encoding (RPE) mechanism and the use of sub-word units as an input to the self-attention layer improve this sublayer for the proposed model’s encoder by capturing all dependencies between the words in right-to-left texts, such as AD input sentences. Experiments were conducted on Maghrebi Arabic to MSA, Levantine Arabic to MSA, Nile Basin Arabic to MSA, Gulf Arabic to MSA, and Iraqi Arabic to MSA. Experimental analysis proved that the proposed reverse positional encoding MHA NMT model was efficiently able to handle the open grammatical structure issue of Arabic dialect sentences, and the proposed RPE MHA NMT model enhanced the translation quality for right-to-left texts such as Arabic dialects.

Suggested Citation

  • Laith H. Baniata & Sangwoo Kang & Isaac. K. E. Ampomah, 2022. "A Reverse Positional Encoding Multi-Head Attention-Based Neural Machine Translation Model for Arabic Dialects," Mathematics, MDPI, vol. 10(19), pages 1-25, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3666-:d:934880
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3666/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3666/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jani Dugonik & Mirjam Sepesy Maučec & Domen Verber & Janez Brest, 2023. "Reduction of Neural Machine Translation Failures by Incorporating Statistical Machine Translation," Mathematics, MDPI, vol. 11(11), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3666-:d:934880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.