IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3525-d927015.html
   My bibliography  Save this article

Synthetic Data Generator for Solving Korean Arithmetic Word Problem

Author

Listed:
  • Kangmin Kim

    (Department of Computer Engineering, Chosun University, Gwangju 61452, Korea)

  • Chanjun Chun

    (Department of Computer Engineering, Chosun University, Gwangju 61452, Korea)

Abstract

A math word problems (MWPs) comprises mathematical logic, numbers, and natural language. To solve these problems, a solver model requires an understanding of language and the ability to reason. Since the 1960s, research on the design of a model that provides automatic solutions for mathematical problems has been continuously conducted, and numerous methods and datasets have been published. However, the published datasets in Korean are insufficient. In this study, we propose a Korean data generator for the first time to address this issue. The proposed data generator comprised problem types and data variations. Moreover, it has 4 problem types and 42 subtypes. The data variation has four categories, which adds robustness to the model. In total, 210,311 pieces of data were used for the experiment, of which 210,000 data points were generated. The training dataset had 150,000 data points. Each validation and test dataset had 30,000 data points. Furthermore, 311 problems were sourced from commercially available books on mathematical problems. We used these problems to evaluate the validity of our data generator on actual math word problems. The experiments confirm that models developed using the proposed data generator can be applied to real data. The proposed generator can be used to solve Korean MWPs in the field of education and the service industry, as well as serve as a basis for future research in this field.

Suggested Citation

  • Kangmin Kim & Chanjun Chun, 2022. "Synthetic Data Generator for Solving Korean Arithmetic Word Problem," Mathematics, MDPI, vol. 10(19), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3525-:d:927015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3525/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3525-:d:927015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.