IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3496-d924637.html
   My bibliography  Save this article

A Malicious Webpage Detection Method Based on Graph Convolutional Network

Author

Listed:
  • Yilin Wang

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

  • Siqing Xue

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

  • Jun Song

    (School of Computer Science, China University of Geosciences, Wuhan 430074, China)

Abstract

In recent years, with the rapid development of the Internet and information technology, video websites, shopping websites, and other portals have grown rapidly. However, malicious webpages can disguise themselves as benign websites and steal users’ private information, which seriously threatens network security. Current detection methods for malicious webpages do not fully utilize the syntactic and semantic information in the web source code. In this paper, we propose a GCN-based malicious webpage detection method (GMWD), which constructs a text graph to describe and then a GCN model to learn the syntactic and semantic correlations within and between webpage source codes. We replace word nodes in the text graph with phrase nodes to better maintain the syntactic and semantic integrity of the webpage source code. In addition, we use the URL links appearing in the source code as auxiliary detection information to further improve the detection accuracy. The experiments showed that the proposed method can achieve 99.86% accuracy and a 0.137% false negative rate, achieving a better performance than other related malicious webpage detection methods.

Suggested Citation

  • Yilin Wang & Siqing Xue & Jun Song, 2022. "A Malicious Webpage Detection Method Based on Graph Convolutional Network," Mathematics, MDPI, vol. 10(19), pages 1-15, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3496-:d:924637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. You Guo & Hector Marco-Gisbert & Paul Keir, 2020. "Mitigating Webshell Attacks through Machine Learning Techniques," Future Internet, MDPI, vol. 12(1), pages 1-16, January.
    2. Ankit Kumar Jain & B. B. Gupta, 2018. "Towards detection of phishing websites on client-side using machine learning based approach," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 68(4), pages 687-700, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Basit & Maham Zafar & Xuan Liu & Abdul Rehman Javed & Zunera Jalil & Kashif Kifayat, 2021. "A comprehensive survey of AI-enabled phishing attacks detection techniques," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 76(1), pages 139-154, January.
    2. Ömer Kasim, 2021. "Automatic detection of phishing pages with event-based request processing, deep-hybrid feature extraction and light gradient boosted machine model," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 78(1), pages 103-115, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3496-:d:924637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.