IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3400-d918836.html
   My bibliography  Save this article

Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method

Author

Listed:
  • Muhammad Shakeel

    (Department of Mathematics, University of Wah, Wah Cantt 47040, Pakistan
    These authors contributed equally to this work and are co-first authors.)

  • Attaullah

    (Department of Mathematics, University of Wah, Wah Cantt 47040, Pakistan)

  • Mohammed Kbiri Alaoui

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia)

  • Ahmed M. Zidan

    (Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia)

  • Nehad Ali Shah

    (Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
    These authors contributed equally to this work and are co-first authors.)

  • Wajaree Weera

    (Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

In this study, the dispersal caused by the transverse Poisson’s effect in a magneto-electro-elastic (MEE) circular rod is taken into consideration using the nonlinear longitudinal wave equation (LWE), a mathematical physics problem. Using the generalized exp-function method, we investigate the families of solitary wave solutions of one-dimensional nonlinear LWE. Using the computer program Wolfram Mathematica 10, these new exact and solitary wave solutions of the LWE are derived as trigonometric function, periodic solitary wave, rational function, hyperbolic function, bright and dark solitons solutions, sinh, cosh, and sech 2 function solutions of the LWE. These solutions represent the electrostatic potential and pressure for LWE as well as the graphical representation of electrostatic potential and pressure.

Suggested Citation

  • Muhammad Shakeel & Attaullah & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Wajaree Weera, 2022. "Closed-Form Solutions in a Magneto-Electro-Elastic Circular Rod via Generalized Exp-Function Method," Mathematics, MDPI, vol. 10(18), pages 1-21, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3400-:d:918836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    2. Wenfeng He & Nana Chen & Ioannis Dassios & Nehad Ali Shah & Jae Dong Chung, 2021. "Fractional System of Korteweg-De Vries Equations via Elzaki Transform," Mathematics, MDPI, vol. 9(6), pages 1-18, March.
    3. Helal, M.A. & Seadawy, A.R. & Zekry, M.H., 2014. "Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 1094-1103.
    4. Seadawy, Aly R., 2015. "Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 124-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seadawy, Aly R. & Ali, Asghar & Althobaiti, Saad & Sayed, Samy, 2021. "Propagation of wave solutions of nonlinear Heisenberg ferromagnetic spin chain and Vakhnenko dynamical equations arising in nonlinear water wave models," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Seadawy, Aly R. & Iqbal, Mujahid & Lu, Dianchen, 2020. "Propagation of kink and anti-kink wave solitons for the nonlinear damped modified Korteweg–de Vries equation arising in ion-acoustic wave in an unmagnetized collisional dusty plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    3. Shumaila Naz & Attia Rani & Muhammad Shakeel & Nehad Ali Shah & Jae Dong Chung, 2022. "Novel Soliton Solutions of the Fractional Riemann Wave Equation via a Mathematical Method," Mathematics, MDPI, vol. 10(22), pages 1-21, November.
    4. Simbawa, Eman & Seadawy, Aly R. & Sugati, Taghreed G., 2021. "Dispersive wave propagation of the nonlinear Sasa-Satsuma dynamical system with computational and analytical soliton solutions," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    5. Attia Rani & Muhammad Shakeel & Mohammed Kbiri Alaoui & Ahmed M. Zidan & Nehad Ali Shah & Prem Junsawang, 2022. "Application of the Exp − φ ξ -Expansion Method to Find the Soliton Solutions in Biomembranes and Nerves," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
    6. Seadawy, Aly R., 2016. "Stability analysis solutions for nonlinear three-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in a magnetized electron–positron plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 44-51.
    7. Mamta Kapoor & Nehad Ali Shah & Salman Saleem & Wajaree Weera, 2022. "An Analytical Approach for Fractional Hyperbolic Telegraph Equation Using Shehu Transform in One, Two and Three Dimensions," Mathematics, MDPI, vol. 10(12), pages 1-26, June.
    8. Seadawy, A.R. & El-Kalaawy, O.H. & Aldenari, R.B., 2016. "Water wave solutions of Zufiria’s higher-order Boussinesq type equations and its stability," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 57-71.
    9. Hamood Ur Rehman & Ifrah Iqbal & Suhad Subhi Aiadi & Nabil Mlaiki & Muhammad Shoaib Saleem, 2022. "Soliton Solutions of Klein–Fock–Gordon Equation Using Sardar Subequation Method," Mathematics, MDPI, vol. 10(18), pages 1-10, September.
    10. Seadawy, Aly R. & Lu, Dianchen & Nasreen, Naila & Nasreen, Shamila, 2019. "Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    11. El-Sheikh, Mohamed M.A. & Seadawy, Aly R. & Ahmed, Hamdy M. & Arnous, Ahmed H. & Rabie, Wafaa B., 2020. "Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    12. Seadawy, Aly R. & Arshad, Muhammad & Lu, Dianchen, 2020. "Dispersive optical solitary wave solutions of strain wave equation in micro-structured solids and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Imre Ferenc Barna & Mihály András Pocsai & László Mátyás, 2022. "Time-Dependent Analytic Solutions for Water Waves above Sea of Varying Depths," Mathematics, MDPI, vol. 10(13), pages 1-16, July.
    14. Seadawy, Aly R. & Nasreen, Naila & Lu, Dianchen & Arshad, Muhammad, 2020. "Arising wave propagation in nonlinear media for the (2+1)-dimensional Heisenberg ferromagnetic spin chain dynamical model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    15. Silambarasan, Rathinavel & Nisar, Kottakkaran Sooppy, 2023. "Doubly periodic solutions and non-topological solitons of 2+1− dimension Wazwaz Kaur Boussinesq equation employing Jacobi elliptic function method," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    16. Khan, Kashif Ali & Seadawy, Aly R. & Raza, Nauman, 2022. "The homotopy simulation of MHD time dependent three dimensional shear thinning fluid flow over a stretching plate," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    17. Seadawy, Aly R. & Arshad, Muhammad & Lu, Dianchen, 2020. "The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Seadawy, Aly R. & Bilal, M. & Younis, M. & Rizvi, S.T.R. & Althobaiti, Saad & Makhlouf, M.M., 2021. "Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3400-:d:918836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.