IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3386-d917928.html
   My bibliography  Save this article

On Comprehension of Genetic Programming Solutions: A Controlled Experiment on Semantic Inference

Author

Listed:
  • Boštjan Slivnik

    (Faculty of Computer and Information Science, University of Ljubljana, Večna Pot 113, 1000 Ljubljana, Slovenia)

  • Željko Kovačević

    (Department of Computer Science and Informatics, Zagreb University of Applied Sciences, Vrbik 8, 10000 Zagreb, Croatia)

  • Marjan Mernik

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia)

  • Tomaž Kosar

    (Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 46, 2000 Maribor, Slovenia)

Abstract

Applied to the problem of automatic program generation, Genetic Programming often produces code bloat, or unexpected solutions that are, according to common belief, difficult to comprehend. To study the comprehensibility of the code produced by Genetic Programming, attribute grammars obtained by Genetic Programming-based semantic inference were compared to manually written ones. According to the established procedure, the research was carried out as a controlled classroom experiment that involved two groups of students from two universities, and consisted of a background questionnaire, two tests and a feedback questionnaire after each test. The tasks included in the tests required the identification of various properties of attributes and grammars, the identification of the correct attribute grammar from a list of choices, or correcting a semantic rule in an attribute grammar. It was established that solutions automatically generated by Genetic Programming in the field of semantic inference, in this study attribute grammars, are indeed significantly harder to comprehend than manually written ones. This finding holds, regardless of whether comprehension correctness, i.e., how many attribute grammars were correctly comprehended, or comprehension efficiency is considered, i.e., how quickly attribute grammars were correctly comprehended.

Suggested Citation

  • Boštjan Slivnik & Željko Kovačević & Marjan Mernik & Tomaž Kosar, 2022. "On Comprehension of Genetic Programming Solutions: A Controlled Experiment on Semantic Inference," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3386-:d:917928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matej Črepinšek & Shih-Hsi Liu & Marjan Mernik & Miha Ravber, 2019. "Long Term Memory Assistance for Evolutionary Algorithms," Mathematics, MDPI, vol. 7(11), pages 1-25, November.
    2. Željko Kovačević & Marjan Mernik & Miha Ravber & Matej Črepinšek, 2020. "From Grammar Inference to Semantic Inference—An Evolutionary Approach," Mathematics, MDPI, vol. 8(5), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomaž Kosar & Željko Kovačević & Marjan Mernik & Boštjan Slivnik, 2023. "The Impact of Code Bloat on Genetic Program Comprehension: Replication of a Controlled Experiment on Semantic Inference," Mathematics, MDPI, vol. 11(17), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomaž Kosar & Željko Kovačević & Marjan Mernik & Boštjan Slivnik, 2023. "The Impact of Code Bloat on Genetic Program Comprehension: Replication of a Controlled Experiment on Semantic Inference," Mathematics, MDPI, vol. 11(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3386-:d:917928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.