IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3282-d911362.html
   My bibliography  Save this article

A Roadside Unit Deployment Optimization Algorithm for Vehicles Serving as Obstacles

Author

Listed:
  • Mingwei Feng

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Haiqing Yao

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Ioan Ungurean

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract

As an important direction of topology management and infrastructure construction in Internet of Vehicles (IoV), the problem of roadside unit deployment has been discussed a lot. Considering the problem of communication occlusion caused by mobile vehicles, a novel multi-objective optimization problem of roadside unit deployment under the constraints of target road coverage and communication reliability is proposed in this paper. Firstly, the traffic flow model of the vehicle is introduced, and the channel model considering the occlusion of a mobile vehicle is proposed by a practical two-ray model and knife-edge diffraction model. Then, on the basis of analyzing the difficulty of the problem, an Improved Artificial Bee Colony algorithm based on Neighborhood Ranking (NR-IABC) and a Greedy Heuristic (GH) algorithm are proposed to approximately solve the problem. The NR-IABC algorithm applies the “Neighborhood Ranking” method to reduce the search domain, and then to further reduce the solution time. In order to avoid a local optimum, the sensitivity and pheromone are used as the selection strategy to replace the traditional roulette selection method in the NR-IABC algorithm. In addition, the mutual attraction between bees is involved in the neighborhood search of the following bees, and a new nectar source is generated according to the reverse learning strategy to replace the worst nectar source at the end of each iteration. Finally, results of comparative simulations based on real-life datasets show that the NR-IABC-based solution can always deploy fewer RSUs, and thus is more cost-effective compared with the GH-based solution.

Suggested Citation

  • Mingwei Feng & Haiqing Yao & Ioan Ungurean, 2022. "A Roadside Unit Deployment Optimization Algorithm for Vehicles Serving as Obstacles," Mathematics, MDPI, vol. 10(18), pages 1-24, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3282-:d:911362
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanjun Shi & Lingling Lv & Hao Yu & Liangjie Yu & Zihui Zhang, 2020. "A Center-Rule-Based Neighborhood Search Algorithm for Roadside Units Deployment in Emergency Scenarios," Mathematics, MDPI, vol. 8(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hazem Noori Abdulrazzak & Goh Chin Hock & Nurul Asyikin Mohamed Radzi & Nadia M. L. Tan & Chiew Foong Kwong, 2022. "Modeling and Analysis of New Hybrid Clustering Technique for Vehicular Ad Hoc Network," Mathematics, MDPI, vol. 10(24), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dávid Baranyai & Tibor Sipos, 2022. "Black-Spot Analysis in Hungary Based on Kernel Density Estimation," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    2. Luyu Zhang & Youfu Lu & Ning Chen & Peng Wang & Weilin Kong & Qingbin Wang & Guizhi Qin & Zhenhua Mou, 2023. "Optimization of Roadside Unit Deployment on Highways under the Evolution of Intelligent Connected-Vehicle Permeability," Sustainability, MDPI, vol. 15(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3282-:d:911362. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.