IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3247-d909435.html
   My bibliography  Save this article

Runge–Kutta Embedded Methods of Orders 8(7) for Use in Quadruple Precision Computations

Author

Listed:
  • Vladislav N. Kovalnogov

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Ruslan V. Fedorov

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Tamara V. Karpukhina

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia)

  • Theodore E. Simos

    (Laboratory of Inter-Disciplinary Problems of Energy Production, Ulyanovsk State Technical University, 32 Severny Venetz Street, 432027 Ulyanovsk, Russia
    Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 40402, Taiwan
    Data Recovery Key Laboratory of Sichuan Province, Neijiang Normal University, Neijiang 641100, China
    Department of Mathematics, University of Western Macedonia, GR52100 Kastoria, Greece)

  • Charalampos Tsitouras

    (General Department, Euripus Campus, National & Kapodistrian University of Athens, GR34400 Psachna, Greece)

Abstract

High algebraic order Runge–Kutta embedded methods are commonly used when stringent tolerances are demanded. Traditionally, various criteria are satisfied while constructing these methods for application in double precision arithmetic. Firstly we try to keep the magnitude of the coefficients low, otherwise we may experience loss of accuracy; however, when working in quadruple precision we may admit larger coefficients. Then we are able to construct embedded methods of orders eight and seven (i.e., pairs of methods) with even smaller truncation errors. A new derived pair, as expected, is performing better than state-of-the-art pairs in a set of relevant problems.

Suggested Citation

  • Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2022. "Runge–Kutta Embedded Methods of Orders 8(7) for Use in Quadruple Precision Computations," Mathematics, MDPI, vol. 10(18), pages 1-12, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3247-:d:909435
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3247/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3247/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsitouras, Ch., 2019. "Explicit Runge–Kutta methods for starting integration of Lane–Emden problem," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Changqing, 2023. "Improved spectral deferred correction methods for fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3247-:d:909435. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.