Two Regularization Methods for the Variational Inequality Problem over the Set of Solutions of the Generalized Mixed Equilibrium Problem
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Heinz H. Bauschke & Patrick L. Combettes, 2001. "A Weak-to-Strong Convergence Principle for Fejér-Monotone Methods in Hilbert Spaces," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 248-264, May.
- Abdellatif Moudafi, 2010. "Proximal methods for a class of bilevel monotone equilibrium problems," Journal of Global Optimization, Springer, vol. 47(2), pages 287-292, June.
- Yanlai Song & Omar Bazighifan, 2022. "Regularization Method for the Variational Inequality Problem over the Set of Solutions to the Generalized Equilibrium Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Omar Bazighifan & Poom Kumam, 2020. "Oscillation Theorems for Advanced Differential Equations with p -Laplacian Like Operators," Mathematics, MDPI, vol. 8(5), pages 1-10, May.
- Yanlai Song, 2021. "Hybrid Inertial Accelerated Algorithms for Solving Split Equilibrium and Fixed Point Problems," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
- Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
- Yao, Yonghong & Cho, Yeol Je & Liou, Yeong-Cheng, 2011. "Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems," European Journal of Operational Research, Elsevier, vol. 212(2), pages 242-250, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yanlai Song & Omar Bazighifan, 2022. "Regularization Method for the Variational Inequality Problem over the Set of Solutions to the Generalized Equilibrium Problem," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Yanlai Song & Omar Bazighifan, 2022. "A New Alternative Regularization Method for Solving Generalized Equilibrium Problems," Mathematics, MDPI, vol. 10(8), pages 1-14, April.
- Yanlai Song & Omar Bazighifan, 2022. "Modified Inertial Subgradient Extragradient Method with Regularization for Variational Inequality and Null Point Problems," Mathematics, MDPI, vol. 10(14), pages 1-17, July.
- Yonghong Yao & Yeong-Cheng Liou & Ngai-Ching Wong, 2013. "Superimposed optimization methods for the mixed equilibrium problem and variational inclusion," Journal of Global Optimization, Springer, vol. 57(3), pages 935-950, November.
- Xie Ding, 2012. "Existence and iterative algorithm of solutions for a class of bilevel generalized mixed equilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 53(3), pages 525-537, July.
- J. X. Cruz Neto & F. M. O. Jacinto & P. A. Soares & J. C. O. Souza, 2018. "On maximal monotonicity of bifunctions on Hadamard manifolds," Journal of Global Optimization, Springer, vol. 72(3), pages 591-601, November.
- Asma Al-Jaser & Belgees Qaraad & Omar Bazighifan & Loredana Florentina Iambor, 2023. "Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior," Mathematics, MDPI, vol. 11(12), pages 1-15, June.
- Cholamjiak, Watcharaporn & Dutta, Hemen, 2022. "Viscosity modification with parallel inertial two steps forward-backward splitting methods for inclusion problems applied to signal recovery," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Yanlai Song, 2021. "Hybrid Inertial Accelerated Algorithms for Solving Split Equilibrium and Fixed Point Problems," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
- Ferdinard U. Ogbuisi & Yekini Shehu & Jen-Chih Yao, 2023. "Relaxed Single Projection Methods for Solving Bilevel Variational Inequality Problems in Hilbert Spaces," Networks and Spatial Economics, Springer, vol. 23(3), pages 641-678, September.
- Yanlai Song & Mihai Postolache, 2021. "Modified Inertial Forward–Backward Algorithm in Banach Spaces and Its Application," Mathematics, MDPI, vol. 9(12), pages 1-17, June.
- X. Ding & Y. Liou & J. Yao, 2012. "Existence and algorithms for bilevel generalized mixed equilibrium problems in Banach spaces," Journal of Global Optimization, Springer, vol. 53(2), pages 331-346, June.
- A. Moudafi, 2011. "Split Monotone Variational Inclusions," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 275-283, August.
- Timilehin Opeyemi Alakoya & Oluwatosin Temitope Mewomo, 2024. "Strong Convergent Inertial Two-subgradient Extragradient Method for Finding Minimum-norm Solutions of Variational Inequality Problems," Networks and Spatial Economics, Springer, vol. 24(2), pages 425-459, June.
- Renli Liang & Yanqin Bai & Hai Xiang Lin, 2019. "An inexact splitting method for the subspace segmentation from incomplete and noisy observations," Journal of Global Optimization, Springer, vol. 73(2), pages 411-429, February.
- Ouayl Chadli & Qamrul Hasan Ansari & Suliman Al-Homidan, 2017. "Existence of Solutions and Algorithms for Bilevel Vector Equilibrium Problems: An Auxiliary Principle Technique," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 726-758, March.
- Yan Tang & Yeol Je Cho, 2019. "Convergence Theorems for Common Solutions of Split Variational Inclusion and Systems of Equilibrium Problems," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
- Farajzadeh, A.P. & Plubtieng, S. & Ungchittrakool, K. & Kumtaeng, D., 2015. "Generalized mixed equilibrium problems with generalized α -η -monotone bifunction in topological vector spaces," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 313-319.
- G. Bento & J. Cruz Neto & J. Lopes & A. Soares Jr & Antoine Soubeyran, 2016. "Generalized Proximal Distances for Bilevel Equilibrium Problems," Post-Print hal-01690192, HAL.
- P. Anh & J. Kim & L. Muu, 2012. "An extragradient algorithm for solving bilevel pseudomonotone variational inequalities," Journal of Global Optimization, Springer, vol. 52(3), pages 627-639, March.
More about this item
Keywords
Hilbert space; strong convergence; monotone operator; regularization method; Tseng’s extragradient method;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2981-:d:891618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.