IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2955-d889401.html
   My bibliography  Save this article

Partially Coupled Stochastic Gradient Estimation for Multivariate Equation-Error Systems

Author

Listed:
  • Ping Ma

    (Jiangsu Key Laboratory of Media Design and Software Technology, School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China)

  • Lei Wang

    (School of Automation, Wuxi University, Wuxi 214105, China)

Abstract

This paper researches the identification problem for the unknown parameters of the multivariate equation-error autoregressive systems. Firstly, the original identification model is decomposed into several sub-identification models according to the number of system outputs. Then, based on the characteristic that the information vector and the parameter vector are common among the sub-identification models, the coupling identification concept is used to propose a partially coupled generalized stochastic gradient algorithm. Furthermore, by expanding the scalar innovation of each subsystem model to the innovation vector, a partially coupled multi-innovation generalized stochastic gradient algorithm is proposed. Finally, the numerical simulations indicate that the proposed algorithms are effective and have good parameter estimation performances.

Suggested Citation

  • Ping Ma & Lei Wang, 2022. "Partially Coupled Stochastic Gradient Estimation for Multivariate Equation-Error Systems," Mathematics, MDPI, vol. 10(16), pages 1-15, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2955-:d:889401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Upadhyay, Ranjit Kumar & Paul, Chinmoy & Mondal, Argha & Vishwakarma, Gajendra K., 2018. "Estimation of biophysical parameters in a neuron model under random fluctuations," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 364-373.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Yongfeng & Wang, Linjie & Dong, Qiang & Lou, Xiaojuan, 2021. "Dynamical complexity of FitzHugh–Nagumo neuron model driven by Lévy noise and Gaussian white noise," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 430-443.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2955-:d:889401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.