IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i16p2875-d885997.html
   My bibliography  Save this article

An Improved Arithmetic Optimization Algorithm and Its Application to Determine the Parameters of Support Vector Machine

Author

Listed:
  • Heping Fang

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiaopeng Fu

    (School of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China)

  • Zhiyong Zeng

    (School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Kunhua Zhong

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China)

  • Shuguang Liu

    (Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China)

Abstract

The arithmetic optimization algorithm (AOA) is a new metaheuristic algorithm inspired by arithmetic operators (addition, subtraction, multiplication, and division) to solve arithmetic problems. The algorithm is characterized by simple principles, fewer parameter settings, and easy implementation, and has been widely used in many fields. However, similar to other meta-heuristic algorithms, AOA suffers from shortcomings, such as slow convergence speed and an easy ability to fall into local optimum. To address the shortcomings of AOA, an improved arithmetic optimization algorithm (IAOA) is proposed. First, dynamic inertia weights are used to improve the algorithm’s exploration and exploitation ability and speed up the algorithm’s convergence speed; second, dynamic mutation probability coefficients and the triangular mutation strategy are introduced to improve the algorithm’s ability to avoid local optimum. In order to verify the effectiveness and practicality of the algorithm in this paper, six benchmark test functions are selected for the optimization search test verification to verify the optimization search ability of IAOA; then, IAOA is used for the parameter optimization of support vector machines to verify the practical ability of IAOA. The experimental results show that IAOA has a strong global search capability, and the optimization-seeking capability is significantly improved, and it shows excellent performance in support vector machine parameter optimization.

Suggested Citation

  • Heping Fang & Xiaopeng Fu & Zhiyong Zeng & Kunhua Zhong & Shuguang Liu, 2022. "An Improved Arithmetic Optimization Algorithm and Its Application to Determine the Parameters of Support Vector Machine," Mathematics, MDPI, vol. 10(16), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2875-:d:885997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/16/2875/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/16/2875/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey O Agushaka & Absalom E Ezugwu, 2021. "Advanced arithmetic optimization algorithm for solving mechanical engineering design problems," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    2. Mahmoud Elsisi & Minh-Quang Tran & Hany M. Hasanien & Rania A. Turky & Fahad Albalawi & Sherif S. M. Ghoneim, 2021. "Robust Model Predictive Control Paradigm for Automatic Voltage Regulators against Uncertainty Based on Optimization Algorithms," Mathematics, MDPI, vol. 9(22), pages 1-19, November.
    3. Ahmed. H. A. Elkasem & Salah Kamel & Mohamed H. Hassan & Mohamed Khamies & Emad M. Ahmed, 2022. "An Eagle Strategy Arithmetic Optimization Algorithm for Frequency Stability Enhancement Considering High Renewable Power Penetration and Time-Varying Load," Mathematics, MDPI, vol. 10(6), pages 1-38, March.
    4. Qingxin Liu & Ni Li & Heming Jia & Qi Qi & Laith Abualigah & Yuxiang Liu, 2022. "A Hybrid Arithmetic Optimization and Golden Sine Algorithm for Solving Industrial Engineering Design Problems," Mathematics, MDPI, vol. 10(9), pages 1-30, May.
    5. Mengnan Chen & Yongquan Zhou & Qifang Luo, 2022. "An Improved Arithmetic Optimization Algorithm for Numerical Optimization Problems," Mathematics, MDPI, vol. 10(12), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:16:p:2875-:d:885997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.