IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2788-d881573.html
   My bibliography  Save this article

Adaptive BP Network Prediction Method for Ground Surface Roughness with High-Dimensional Parameters

Author

Listed:
  • Xubao Liu

    (Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yuhang Pan

    (Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Ying Yan

    (Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Yonghao Wang

    (Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

  • Ping Zhou

    (Key Laboratory for Precision and Non-Traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China)

Abstract

Ground surface roughness is difficult to predict through a physical model due to its complex influencing factors. BP neural networks (BPNNs), a promising method, have been widely applied in the prediction of surface roughness. This paper uses the concept of BPNN to predict ground surface roughness considering the state of the grinding wheel. However, as the number of input parameters increases, the local optimum solution of the model that arises is more serious. Therefore, “identify factors” are designed to judge the iterative state of the model, whilst “memory factors” are designed to store the best weights during network training. The iterative termination conditions of the model are improved, and the learning rate and update rules of the weights are adjusted to avoid the local optimal solution. The results show that the prediction accuracy of the presented model is higher and more stable than the traditional model. Under three types of iteration steps, the average prediction accuracy is improved from 0.071, 0.065, 0.066 to 0.049, 0.042, 0.039 and the standard deviation of prediction decreased from 0.0017, 0.0166, 0.0175 to 0.0017, 0.0070, 0.0076, respectively. Therefore, the proposed method provides guidance for improving the global optimization ability of BPNNs and developing more accurate models for predicting surface roughness.

Suggested Citation

  • Xubao Liu & Yuhang Pan & Ying Yan & Yonghao Wang & Ping Zhou, 2022. "Adaptive BP Network Prediction Method for Ground Surface Roughness with High-Dimensional Parameters," Mathematics, MDPI, vol. 10(15), pages 1-18, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2788-:d:881573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2788/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2788/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuhang Pan & Yonghao Wang & Ping Zhou & Ying Yan & Dongming Guo, 2020. "Activation functions selection for BP neural network model of ground surface roughness," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1825-1836, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng Shao & Runhua Tan & Qingjin Peng & Wendan Yang & Fang Liu, 2023. "An Integrated Method to Acquire Technological Evolution Potential to Stimulate Innovative Product Design," Mathematics, MDPI, vol. 11(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zengya Zhao & Sibao Wang & Zehua Wang & Shilong Wang & Chi Ma & Bo Yang, 2022. "Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 943-952, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2788-:d:881573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.