IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2765-d879917.html
   My bibliography  Save this article

An Integral Sliding Mode Stator Current Control for Industrial Induction Motor

Author

Listed:
  • Fahimeh Shiravani

    (Engineering School of Gipuzkoa, University of the Basque Country, Otaola Hirib. 29, 20600 Eibar, Spain)

  • Patxi Alkorta

    (Engineering School of Gipuzkoa, University of the Basque Country, Otaola Hirib. 29, 20600 Eibar, Spain)

  • Jose Antonio Cortajarena

    (Engineering School of Gipuzkoa, University of the Basque Country, Otaola Hirib. 29, 20600 Eibar, Spain)

  • Oscar Barambones

    (Engineering School of Vitoria, University of the Basque Country, Nieves Cano 12, 01006 Vitoria, Spain)

Abstract

An integral sliding mode control (ISMC) for stator currents of the induction motor (IM) is developed in this work. The proposed controller is developed in the d-q synchronous reference frame, by using the indirect field-oriented control (FOC) method. Robust asymptotic tracking of stator current components in the presence of model uncertainties and current coupling disturbance terms has been guaranteed by using an enhanced ISMC surface. More precisely, the stationary error of stator currents has been eliminated, and the accuracy of the regulators has been enhanced. According to the Lyapunov approach, it has been proven that the stator currents tracking happens asymptotically, and consequently, the stability of each loop has been demonstrated. Simulation and experimental results show the capability of the new controller in diminishing system chattering and increasing the robustness of the designed scheme, considering the variation of the plant parameters and current disturbance terms. It has been illustrated that compared with the conventional ISMC and PI regulators, the proposed current controllers provide smoother control actions and excellent dynamics. In addition, because of the precise control over the rotor flux, the rotor flux weakening method is employed to run the motor at a higher speed than the rated value.

Suggested Citation

  • Fahimeh Shiravani & Patxi Alkorta & Jose Antonio Cortajarena & Oscar Barambones, 2022. "An Integral Sliding Mode Stator Current Control for Industrial Induction Motor," Mathematics, MDPI, vol. 10(15), pages 1-20, August.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2765-:d:879917
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed A. Zaki Diab & Mohammed A. Elsawy & Kotin A. Denis & Salem Alkhalaf & Ziad M. Ali, 2022. "Artificial Neural Based Speed and Flux Estimators for Induction Machine Drives with Matlab/Simulink," Mathematics, MDPI, vol. 10(8), pages 1-22, April.
    2. Mohammad Hosein Sabzalian & Khalid A. Alattas & Fayez F. M. El-Sousy & Ardashir Mohammadzadeh & Saleh Mobayen & Mai The Vu & Mauricio Aredes, 2022. "A Neural Controller for Induction Motors: Fractional-Order Stability Analysis and Online Learning Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Guo & Hejun Yao & Fangzheng Gao, 2022. "Global Prescribed-Time Stabilization of High-Order Nonlinear Systems with Asymmetric Actuator Dead-Zone," Mathematics, MDPI, vol. 10(12), pages 1-15, June.
    2. Hualin Song & Cheng Hu & Juan Yu, 2022. "Stability and Synchronization of Fractional-Order Complex-Valued Inertial Neural Networks: A Direct Approach," Mathematics, MDPI, vol. 10(24), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2765-:d:879917. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.