IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i15p2639-d873484.html
   My bibliography  Save this article

Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations

Author

Listed:
  • Ndivhuwo Ndou

    (Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Phumlani Dlamini

    (Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Byron Alexander Jacobs

    (Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

Abstract

In this study, we develop the enhanced unconditionally positive finite difference method (EUPFD), and use it to solve linear and nonlinear advection–diffusion–reaction (ADR) equations. This method incorporates the proper orthogonal decomposition technique to the unconditionally positive finite difference method (UPFD) to reduce the degree of freedom of the ADR equations. We investigate the efficiency and effectiveness of the proposed method by checking the error, convergence rate, and computational time that the method takes to converge to the exact solution. Solutions obtained by the EUPFD were compared with the exact solutions for validation purposes. The agreement between the solutions means the proposed method effectively solved the ADR equations. The numerical results show that the proposed method greatly improves computational efficiency without a significant loss in accuracy for solving linear and nonlinear ADR equations.

Suggested Citation

  • Ndivhuwo Ndou & Phumlani Dlamini & Byron Alexander Jacobs, 2022. "Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–Reaction Equations," Mathematics, MDPI, vol. 10(15), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2639-:d:873484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/15/2639/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/15/2639/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Hasib & Gómez-Aguilar, J.F. & Khan, Aziz & Khan, Tahir Saeed, 2019. "Stability analysis for fractional order advection–reaction diffusion system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 737-751.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issa Omle & Ali Habeeb Askar & Endre Kovács & Betti Bolló, 2023. "Comparison of the Performance of New and Traditional Numerical Methods for Long-Term Simulations of Heat Transfer in Walls with Thermal Bridges," Energies, MDPI, vol. 16(12), pages 1-27, June.
    2. Mahmoud Saleh & Endre Kovács & Imre Ferenc Barna & László Mátyás, 2022. "New Analytical Results and Comparison of 14 Numerical Schemes for the Diffusion Equation with Space-Dependent Diffusion Coefficient," Mathematics, MDPI, vol. 10(15), pages 1-26, August.
    3. Farzaneh Safari & Qingshan Tong & Zhen Tang & Jun Lu, 2022. "A Meshfree Approach for Solving Fractional Galilei Invariant Advection–Diffusion Equation through Weighted–Shifted Grünwald Operator," Mathematics, MDPI, vol. 10(21), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Zeeshan & Rabiei, Faranak & Hosseini, Kamyar, 2023. "A fractal–fractional-order modified Predator–Prey mathematical model with immigrations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 466-481.
    2. Kumar, Surendra & Sharma, Abhishek & Pal Singh, Harendra, 2021. "Convergence and global stability analysis of fractional delay block boundary value methods for fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    3. Ayesha Javed & Syed Asad Ali Gillani & Wasim Abbass & Muhammad Rizwan Riaz & Rashid Hameed & Safeer Abbas & Abdelatif Salmi & Ahmed Farouk Deifalla, 2022. "Mechanical Performance of Amorphous Metallic Fiber-Reinforced and Rubberized Thin Bonded Cement-Based Overlays," Sustainability, MDPI, vol. 14(13), pages 1-22, July.
    4. Khan, Hasib & Jarad, Fahd & Abdeljawad, Thabet & Khan, Aziz, 2019. "A singular ABC-fractional differential equation with p-Laplacian operator," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 56-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:15:p:2639-:d:873484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.