IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2179-d845345.html
   My bibliography  Save this article

Hybridization of Manta-Ray Foraging Optimization Algorithm with Pseudo Parameter-Based Genetic Algorithm for Dealing Optimization Problems and Unit Commitment Problem

Author

Listed:
  • Mohammed A. El-Shorbagy

    (Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt)

  • Hala A. Omar

    (Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt)

  • Tamer Fetouh

    (Electrical Engineering Department, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt)

Abstract

The manta ray foraging optimization algorithm (MRFO) is one of the promised meta-heuristic optimization algorithms. However, it can stick to a local minimum, consuming iterations without reaching the optimum solution. So, this paper proposes a hybridization between MRFO, and the genetic algorithm (GA) based on a pseudo parameter; where the GA can help MRFO to escape from falling into the local minimum. It is called a pseudo genetic algorithm with manta-ray foraging optimization (PGA-MRFO). The proposed algorithm is not a classical hybridization between MRFO and GA, wherein the classical hybridization consumes time in the search process as each algorithm is applied to all system variables. In addition, the classical hybridization results in an extended search algorithm, especially in systems with many variables. The PGA-MRFO hybridizes the pseudo-parameter-based GA and the MRFO algorithm to produce a more efficient algorithm that combines the advantages of both algorithms without getting stuck in a local minimum or taking a long time in the calculations. The pseudo parameter enables the GA to be applied to a specific number of variables and not to all system variables leading to reduce the computation time and burden. Also, the proposed algorithm used an approximation for the gradient of the objective function, which leads to dispensing derivatives calculations. Besides, PGA-MRFO depends on the pseudo inverse of non-square matrices, which saves calculations time; where the dependence on the pseudo inverse gives the algorithm more flexibility to deal with square and non-square systems. The proposed algorithm will be tested on the test functions that the main MRFO failed to find their optimum solution to prove its capability and efficiency. In addition, it will be applied to solve the unit commitment (UC) problem as one of the vital power system problems to show the validity of the proposed algorithm in practical applications. Finally, several analyses will be applied to the proposed algorithm to illustrate its effectiveness and reliability.

Suggested Citation

  • Mohammed A. El-Shorbagy & Hala A. Omar & Tamer Fetouh, 2022. "Hybridization of Manta-Ray Foraging Optimization Algorithm with Pseudo Parameter-Based Genetic Algorithm for Dealing Optimization Problems and Unit Commitment Problem," Mathematics, MDPI, vol. 10(13), pages 1-33, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2179-:d:845345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sirote Khunkitti & Neville R. Watson & Rongrit Chatthaworn & Suttichai Premrudeepreechacharn & Apirat Siritaratiwat, 2019. "An Improved DA-PSO Optimization Approach for Unit Commitment Problem," Energies, MDPI, vol. 12(12), pages 1-23, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed A. El-Shorbagy & Fatma M. Al-Drees, 2023. "Studying the Effect of Introducing Chaotic Search on Improving the Performance of the Sine Cosine Algorithm to Solve Optimization Problems and Nonlinear System of Equations," Mathematics, MDPI, vol. 11(5), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    2. Borche Postolov & Nikolay Hinov & Atanas Iliev & Dimitar Dimitrov, 2022. "Short-Term Hydro-Thermal-Solar Scheduling with CCGT Based on Self-Adaptive Genetic Algorithm," Energies, MDPI, vol. 15(16), pages 1-25, August.
    3. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn, 2021. "Multi-Objective Optimal Power Flow Problems Based on Slime Mould Algorithm," Sustainability, MDPI, vol. 13(13), pages 1-21, July.
    4. Layon Mescolin de Oliveira & Ivo Chaves da Silva Junior & Ramon Abritta, 2022. "Search Space Reduction for the Thermal Unit Commitment Problem through a Relevance Matrix," Energies, MDPI, vol. 15(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2179-:d:845345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.