IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i12p2063-d839053.html
   My bibliography  Save this article

Recent Iris and Ocular Recognition Methods in High- and Low-Resolution Images: A Survey

Author

Listed:
  • Young Won Lee

    (Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

  • Kang Ryoung Park

    (Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea)

Abstract

Among biometrics, iris and ocular recognition systems are the methods that recognize eye features in an image. Such iris and ocular regions must have a certain image resolution to achieve a high recognition performance; otherwise, the risk of performance degradation arises. This is even more critical in the case of iris recognition where detailed patterns are used. In cases where such low-resolution images are acquired and the acquisition apparatus and environment cannot be improved, recognition performance can be enhanced by obtaining high-resolution images with methods such as super-resolution reconstruction. However, previous survey papers have mainly summarized studies on high-resolution iris and ocular recognition, but do not provide detailed summaries of studies on low-resolution iris and ocular recognition. Therefore, we investigated high-resolution iris and ocular recognition methods and introduced in detail the low-resolution iris and ocular recognition methods and methods of solving the low-resolution problem. Furthermore, since existing survey papers have focused on and summarized studies on traditional handcrafted feature-based iris and ocular recognition, this survey paper also introduced the latest deep learning-based methods in detail.

Suggested Citation

  • Young Won Lee & Kang Ryoung Park, 2022. "Recent Iris and Ocular Recognition Methods in High- and Low-Resolution Images: A Survey," Mathematics, MDPI, vol. 10(12), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2063-:d:839053
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/12/2063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/12/2063/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:12:p:2063-:d:839053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.