IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1923-d831188.html
   My bibliography  Save this article

Emergent Intelligence in Smart Ecosystems: Conflicts Resolution by Reaching Consensus in Resource Management

Author

Listed:
  • George Rzevski

    (Complexity and Design Research Group, The Open University, Milton Keynes MK7 6AA, UK)

  • Petr Skobelev

    (Samara Federal Center of Russian Academy of Science, Studenchesky Str., 3A, 443001 Samara, Russia)

  • Alexey Zhilyaev

    (Department of Electronic Systems, Information Technology Faculty, Samara State Technical University, Molodogvardeyskaya Str. 244, 443100 Samara, Russia)

Abstract

A new emergent intelligence approach to the design of smart ecosystems, based on the complexity science principles, is introduced and discussed. The smart ecosystem for resource management is defined as a system of autonomous decision-making multi-agent systems capable to allocate resources, plan orders for resources, and to optimize, coordinate, monitor, and control the execution of plans in real time. The emergent intelligence enables software agents to collectively resolve conflicts arising in resource management decisions by reaching a consensus through a process of detecting conflicts and negotiation for finding trade-offs. The key feature of the proposed approach is the ontological model of the enterprise and the method of collective decision-making by software agents that compete or cooperate with each other on the virtual market of the digital ecosystem. Emergent intelligent systems do not require extensive training using a large quantity of data, like conventional artificial intelligence/machine learning systems. The developed model, method, and tool were applied for managing the resources of a factory workshop, a group of small satellites, and some other applications. A comparison of the developed and traditional tools is given. The new metric for measuring the adaptability of emergent intelligence is introduced. The performance of the new model and method are validated by constructing and evaluating large-scale resource management solutions for commercial clients. As demonstrated, the essential benefit is the high adaptability and efficiency of the resource management systems when operating under complex and dynamic market conditions.

Suggested Citation

  • George Rzevski & Petr Skobelev & Alexey Zhilyaev, 2022. "Emergent Intelligence in Smart Ecosystems: Conflicts Resolution by Reaching Consensus in Resource Management," Mathematics, MDPI, vol. 10(11), pages 1-24, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1923-:d:831188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780511771576 is not listed on IDEAS
    2. Easley,David & Kleinberg,Jon, 2010. "Networks, Crowds, and Markets," Cambridge Books, Cambridge University Press, number 9780521195331, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blazquez-Soriano, Amparo & Ramos-Sandoval, Rosmery, 2022. "Information transfer as a tool to improve the resilience of farmers against the effects of climate change: The case of the Peruvian National Agrarian Innovation System," Agricultural Systems, Elsevier, vol. 200(C).
    2. Martin L. Weitzman, 2015. "A Voting Architecture for the Governance of Free-Driver Externalities, with Application to Geoengineering," Scandinavian Journal of Economics, Wiley Blackwell, vol. 117(4), pages 1049-1068, October.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    5. Kobayashi, Teruyoshi & Takaguchi, Taro, 2018. "Identifying relationship lending in the interbank market: A network approach," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 20-36.
    6. Konstantinos Antoniadis & Kostas Zafiropoulos & Vasiliki Vrana, 2016. "A Method for Assessing the Performance of e-Government Twitter Accounts," Future Internet, MDPI, vol. 8(2), pages 1-18, April.
    7. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    8. Lomi, Alessandro & Fonti, Fabio, 2012. "Networks in markets and the propensity of companies to collaborate: An empirical test of three mechanisms," Economics Letters, Elsevier, vol. 114(2), pages 216-220.
    9. Zhang, Xuxi & Liu, Xianping & Lewis, Frank L. & Wang, Xia, 2020. "Bipartite tracking consensus of nonlinear multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Bing Han & Liyan Yang, 2013. "Social Networks, Information Acquisition, and Asset Prices," Management Science, INFORMS, vol. 59(6), pages 1444-1457, June.
    11. Dimitrios Karamanis, 2022. "Defence partnerships, military expenditure, investment, and economic growth: an analysis in PESCO countries," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 173, Hellenic Observatory, LSE.
    12. Levent V. Orman, 2016. "Information markets over trust networks," Electronic Commerce Research, Springer, vol. 16(4), pages 529-551, December.
    13. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    14. Pablo Galaso & Adrián Rodríguez Miranda & Sebastian Goinheix, 2018. "Local development, social capital and social network analysis: evidence from Uruguay," Revista de Estudios Regionales, Universidades Públicas de Andalucía, vol. 3, pages 137-163.
    15. Takahiro Ezaki & Naoki Masuda, 2017. "Reinforcement learning account of network reciprocity," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-8, December.
    16. Mariann Ollar & Marzena Rostek, 2011. "Information Aggregation and Innovation in Market Design," Working Papers 11-12, NET Institute.
    17. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    18. Lillo, Felipe & Valdés, Rodrigo, 2016. "Dynamics of financial markets and transaction costs: A graph-based study," Research in International Business and Finance, Elsevier, vol. 38(C), pages 455-465.
    19. Usha Sridhar & Sridhar Mandyam, 2016. "Loan Allocation and Guarantee Structure for Group Borrower Networks in Microfinance," Studies in Microeconomics, , vol. 4(2), pages 100-114, December.
    20. Arifovic, Jasmina & Eaton, B. Curtis & Walker, Graeme, 2015. "The coevolution of beliefs and networks," Journal of Economic Behavior & Organization, Elsevier, vol. 120(C), pages 46-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1923-:d:831188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.