IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i11p1843-d825588.html
   My bibliography  Save this article

A Fast Galerkin Approach for Solving the Fractional Rayleigh–Stokes Problem via Sixth-Kind Chebyshev Polynomials

Author

Listed:
  • Ahmed Gamal Atta

    (Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11566, Egypt)

  • Waleed Mohamed Abd-Elhameed

    (Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt)

  • Galal Mahrous Moatimid

    (Department of Mathematics, Faculty of Education, Ain Shams University, Cairo 11566, Egypt)

  • Youssri Hassan Youssri

    (Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt)

Abstract

Herein, a spectral Galerkin method for solving the fractional Rayleigh–Stokes problem involving a nonlinear source term is analyzed. Two kinds of basis functions that are related to the shifted sixth-kind Chebyshev polynomials are selected and utilized in the numerical treatment of the problem. Some specific integer and fractional derivative formulas are used to introduce our proposed numerical algorithm. Moreover, the stability and convergence accuracy are derived in detail. As a final validation of our theoretical results, we present a few numerical examples.

Suggested Citation

  • Ahmed Gamal Atta & Waleed Mohamed Abd-Elhameed & Galal Mahrous Moatimid & Youssri Hassan Youssri, 2022. "A Fast Galerkin Approach for Solving the Fractional Rayleigh–Stokes Problem via Sixth-Kind Chebyshev Polynomials," Mathematics, MDPI, vol. 10(11), pages 1-16, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1843-:d:825588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/11/1843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/11/1843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Fengying & Xu, Xiaoyong, 2016. "The third kind Chebyshev wavelets collocation method for solving the time-fractional convection diffusion equations with variable coefficients," Applied Mathematics and Computation, Elsevier, vol. 280(C), pages 11-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassani, Hossein & Naraghirad, Eskandar, 2019. "A new computational method based on optimization scheme for solving variable-order time fractional Burgers’ equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 1-17.
    2. Prakash, Amit & Kumar, Manoj & Baleanu, Dumitru, 2018. "A new iterative technique for a fractional model of nonlinear Zakharov–Kuznetsov equations via Sumudu transform," Applied Mathematics and Computation, Elsevier, vol. 334(C), pages 30-40.
    3. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2018. "Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 433-453.
    4. Wu, Longyuan & Zhai, Shuying, 2020. "A new high order ADI numerical difference formula for time-fractional convection-diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    5. Faheem, Mo & Khan, Arshad & Raza, Akmal, 2022. "A high resolution Hermite wavelet technique for solving space–time-fractional partial differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 588-609.
    6. Sweilam, Nasser Hassan & El-Sayed, Adel Abd Elaziz & Boulaaras, Salah, 2021. "Fractional-order advection-dispersion problem solution via the spectral collocation method and the non-standard finite difference technique," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:11:p:1843-:d:825588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.