IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v1y2017i2p10-d121529.html
   My bibliography  Save this article

A Food Transportation Framework for an Efficient and Worker-Friendly Fresh Food Physical Internet

Author

Listed:
  • Amitangshu Pal

    (Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
    These authors contributed equally to this work.)

  • Krishna Kant

    (Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA
    These authors contributed equally to this work.)

Abstract

In this paper, we introduce a physical Internet architecture for fresh food distribution networks with the goal of meeting the key challenges of maximizing the freshness of the delivered product and minimizing waste. The physical Internet (PI) architecture is based on the fundamental assumptions of infrastructure sharing among various parties, standardized addressing of all entities and modularized operations. In this paper, we enhance the PI architecture by including a freshness metric and the space-efficient loading/unloading of heterogeneous perishable goods onto the trucks depending on their delivery requirements. We also discuss mechanisms for reducing empty miles of trucks and the carbon footprint of the logistics while reducing the driver’s away-from-home time for long distance delivery. Via extensive simulations, the paper shows that the proposed architecture reduces the driver’s away-from-home time by ∼93%, whereas it improves the food delivery freshness by ∼5%. We show that there is a clear tradeoff between the transportation efficiency of the trucks and the delivery freshness of the food packages.

Suggested Citation

  • Amitangshu Pal & Krishna Kant, 2017. "A Food Transportation Framework for an Efficient and Worker-Friendly Fresh Food Physical Internet," Logistics, MDPI, vol. 1(2), pages 1-21, December.
  • Handle: RePEc:gam:jlogis:v:1:y:2017:i:2:p:10-:d:121529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/1/2/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/1/2/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maia, Luis Otavio Aleotti & Lago, Regina Araujo & Qassim, Raad Yahya, 1997. "Selection of postharvest technology routes by mixed-integer linear programming," International Journal of Production Economics, Elsevier, vol. 49(2), pages 85-90, April.
    2. Pahl, Julia & Voß, Stefan, 2014. "Integrating deterioration and lifetime constraints in production and supply chain planning: A survey," European Journal of Operational Research, Elsevier, vol. 238(3), pages 654-674.
    3. Ahumada, Omar & Villalobos, J. Rene, 2009. "Application of planning models in the agri-food supply chain: A review," European Journal of Operational Research, Elsevier, vol. 196(1), pages 1-20, July.
    4. Eric Ballot & Olivier Gobet & Benoit Montreuil, 2012. "Physical Internet Enabled Open Hub Network Design for Distributed Networked Operations," Post-Print hal-00696956, HAL.
    5. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lejarza, Fernando & Pistikopoulos, Ioannis & Baldea, Michael, 2021. "A scalable real-time solution strategy for supply chain management of fresh produce: A Mexico-to-United States cross border study," International Journal of Production Economics, Elsevier, vol. 240(C).
    2. Soto-Silva, Wladimir E. & Nadal-Roig, Esteve & González-Araya, Marcela C. & Pla-Aragones, Lluis M., 2016. "Operational research models applied to the fresh fruit supply chain," European Journal of Operational Research, Elsevier, vol. 251(2), pages 345-355.
    3. Jonkman, Jochem & Barbosa-Póvoa, Ana P. & Bloemhof, Jacqueline M., 2019. "Integrating harvesting decisions in the design of agro-food supply chains," European Journal of Operational Research, Elsevier, vol. 276(1), pages 247-258.
    4. Kusumastuti, Ratih Dyah & Donk, Dirk Pieter van & Teunter, Ruud, 2016. "Crop-related harvesting and processing planning: a review," International Journal of Production Economics, Elsevier, vol. 174(C), pages 76-92.
    5. Lee, Deishin & Tongarlak, Mustafa Hayri, 2017. "Converting retail food waste into by-product," European Journal of Operational Research, Elsevier, vol. 257(3), pages 944-956.
    6. de Keizer, Marlies & Akkerman, Renzo & Grunow, Martin & Bloemhof, Jacqueline M. & Haijema, Rene & van der Vorst, Jack G.A.J., 2017. "Logistics network design for perishable products with heterogeneous quality decay," European Journal of Operational Research, Elsevier, vol. 262(2), pages 535-549.
    7. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    8. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    9. Ahumada, Omar & Rene Villalobos, J. & Nicholas Mason, A., 2012. "Tactical planning of the production and distribution of fresh agricultural products under uncertainty," Agricultural Systems, Elsevier, vol. 112(C), pages 17-26.
    10. Tuğçe Taşkıner & Bilge Bilgen, 2021. "Optimization Models for Harvest and Production Planning in Agri-Food Supply Chain: A Systematic Review," Logistics, MDPI, vol. 5(3), pages 1-27, August.
    11. Jena, Sanjay Dominik & Poggi, Marcus, 2013. "Harvest planning in the Brazilian sugar cane industry via mixed integer programming," European Journal of Operational Research, Elsevier, vol. 230(2), pages 374-384.
    12. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    13. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    14. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    15. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    16. Bianca Polenzani & Chiara Riganelli & Andrea Marchini, 2020. "Sustainability Perception of Local Extra Virgin Olive Oil and Consumers’ Attitude: A New Italian Perspective," Sustainability, MDPI, vol. 12(3), pages 1-18, January.
    17. Perez-Mesa, Juan Carlos & Galdeano-Gomez, Emilio & Aznar-Sanchez, Jose A., 2011. "Management System for Harvest Scheduling: The Case of Horticultural Production in Southeast Spain," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 14(4), pages 1-20, November.
    18. Alamri, Adel A. & Syntetos, Aris A., 2018. "Beyond LIFO and FIFO: Exploring an Allocation-In-Fraction-Out (AIFO) policy in a two-warehouse inventory model," International Journal of Production Economics, Elsevier, vol. 206(C), pages 33-45.
    19. Murat Öztürk, 2024. "An Agro-Food Planning System: Democratic, Decentralized, Holistic, and Voluntary Participatory," Sustainability, MDPI, vol. 16(21), pages 1-27, October.
    20. Andrea Gallo & Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini, 2017. "Designing Sustainable Cold Chains for Long-Range Food Distribution: Energy-Effective Corridors on the Silk Road Belt," Sustainability, MDPI, vol. 9(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:1:y:2017:i:2:p:10-:d:121529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.