IDEAS home Printed from https://ideas.repec.org/a/gam/jlawss/v9y2020i2p12-d364699.html
   My bibliography  Save this article

Wearable Technologies and Smart Clothes in the Fashion Business: Some Issues Concerning Cybersecurity and Data Protection

Author

Listed:
  • Giovanni Ziccardi

    (Law Department «Cesare Beccaria», University of Milan, 20122 Milan, Italy)

Abstract

Wearable devices and smart clothes give rise to pivotal technological and legal issues in the fashion business. The cybersecurity attention in the digital society, and the advent of General Data Protection Regulation No. 2016/679 (GDPR) in the European, and global, legal framework, implied the need to evaluate which norms and aspects of the European Regulation could apply to wearable devices, which are becoming more and more invasive. Wearable devices are, first of all (and from a data protection point of view), intrusive tools that can put users’ personal (and intimate) data at risk. In particular, we will discuss the aspects of the spread of an accountability “culture” (also) in the fashion business, the need for correct management policy of data breaches, the rights of transparency for users/customers who are using wearable devices and smart clothes, and respect for the dignity and nondiscrimination of the individual during the data collection and processing. These are, all, fundamental points: the protection of the individual’s data in the digital landscape is, in fact, strictly connected to the protection of his/her fundamental rights in the modern digital society.

Suggested Citation

  • Giovanni Ziccardi, 2020. "Wearable Technologies and Smart Clothes in the Fashion Business: Some Issues Concerning Cybersecurity and Data Protection," Laws, MDPI, vol. 9(2), pages 1-13, May.
  • Handle: RePEc:gam:jlawss:v:9:y:2020:i:2:p:12-:d:364699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2075-471X/9/2/12/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2075-471X/9/2/12/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edwards, Lilian & Veale, Michael, 2017. "Slave to the Algorithm? Why a 'right to an explanation' is probably not the remedy you are looking for," LawArXiv 97upg, Center for Open Science.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. König, Pascal D. & Wenzelburger, Georg, 2021. "The legitimacy gap of algorithmic decision-making in the public sector: Why it arises and how to address it," Technology in Society, Elsevier, vol. 67(C).
    2. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    3. Buhmann, Alexander & Fieseler, Christian, 2021. "Towards a deliberative framework for responsible innovation in artificial intelligence," Technology in Society, Elsevier, vol. 64(C).
    4. Cobbe, Jennifer & Veale, Michael & Singh, Jatinder, 2023. "Understanding Accountability in Algorithmic Supply Chains," SocArXiv p4sey, Center for Open Science.
    5. Kirsten Martin & Ari Waldman, 2023. "Are Algorithmic Decisions Legitimate? The Effect of Process and Outcomes on Perceptions of Legitimacy of AI Decisions," Journal of Business Ethics, Springer, vol. 183(3), pages 653-670, March.
    6. Vesnic-Alujevic, Lucia & Nascimento, Susana & Pólvora, Alexandre, 2020. "Societal and ethical impacts of artificial intelligence: Critical notes on European policy frameworks," Telecommunications Policy, Elsevier, vol. 44(6).
    7. Veale, Michael, 2017. "Logics and practices of transparency and opacity in real-world applications of public sector machine learning," SocArXiv 6cdhe, Center for Open Science.
    8. Söderlund, Kasia & Engström, Emma & Haresamudram, Kashyap & Larsson, Stefan & Strimling, Pontus, 2024. "Regulating high-reach AI: On transparency directions in the Digital Services Act," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 13(1), pages 1-31.
    9. Mazur Joanna, 2019. "Automated Decision-Making and the Precautionary Principle in EU Law," TalTech Journal of European Studies, Sciendo, vol. 9(4), pages 3-18, December.
    10. Daniela Sele & Marina Chugunova, 2023. "Putting a Human in the Loop: Increasing Uptake, but Decreasing Accuracy of Automated Decision-Making," Rationality and Competition Discussion Paper Series 438, CRC TRR 190 Rationality and Competition.
    11. Frederik Zuiderveen Borgesius & Joost Poort, 2017. "Online Price Discrimination and EU Data Privacy Law," Journal of Consumer Policy, Springer, vol. 40(3), pages 347-366, September.
    12. Veale, Michael & Van Kleek, Max & Binns, Reuben, 2018. "Fairness and Accountability Design Needs for Algorithmic Support in High-Stakes Public Sector Decision-Making," SocArXiv 8kvf4, Center for Open Science.
    13. Kira J.M. Matus & Michael Veale, 2022. "Certification systems for machine learning: Lessons from sustainability," Regulation & Governance, John Wiley & Sons, vol. 16(1), pages 177-196, January.
    14. Larisa Găbudeanu & Iulia Brici & Codruța Mare & Ioan Cosmin Mihai & Mircea Constantin Șcheau, 2021. "Privacy Intrusiveness in Financial-Banking Fraud Detection," Risks, MDPI, vol. 9(6), pages 1-22, June.
    15. Rolf H. Weber, 2021. "Artificial Intelligence ante portas: Reactions of Law," J, MDPI, vol. 4(3), pages 1-14, September.
    16. I. Ooijen & Helena U. Vrabec, 2019. "Does the GDPR Enhance Consumers’ Control over Personal Data? An Analysis from a Behavioural Perspective," Journal of Consumer Policy, Springer, vol. 42(1), pages 91-107, March.
    17. Janssen, Patrick & Sadowski, Bert M., 2021. "Bias in Algorithms: On the trade-off between accuracy and fairness," 23rd ITS Biennial Conference, Online Conference / Gothenburg 2021. Digital societies and industrial transformations: Policies, markets, and technologies in a post-Covid world 238032, International Telecommunications Society (ITS).
    18. Matus, Kira & Veale, Michael, 2021. "Certification Systems for Machine Learning: Lessons from Sustainability," SocArXiv pm3wy, Center for Open Science.
    19. Vasiliki Koniakou, 2023. "From the “rush to ethics” to the “race for governance” in Artificial Intelligence," Information Systems Frontiers, Springer, vol. 25(1), pages 71-102, February.
    20. Koefer, Franziska & Lemken, Ivo & Pauls, Jan, 2023. "Fairness in algorithmic decision systems: A microfinance perspective," EIF Working Paper Series 2023/88, European Investment Fund (EIF).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlawss:v:9:y:2020:i:2:p:12-:d:364699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.