IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i5p140-d354598.html
   My bibliography  Save this article

Airflow Field Around Hippophae rhamnoides in Alpine Semi-Arid Desert

Author

Listed:
  • Lihui Tian

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning 810016, China)

  • Wangyang Wu

    (School of Earth Sciences, East China University of Technology, Nanchang 200237, China)

  • Dengshan Zhang

    (State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Agricultural Forestry Sciences, Qinghai University, Xi’ning 810016, China)

  • Yang Yu

    (Department of Sediment Research, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

The research on wind regimes and the wind protection mechanism of sand-fixing plants has mainly relied on wind tunnel experiments; few observations have been made in the field. At the same time, airflow around individual standing vegetation elements and communities is relatively lacking in alpine semi-arid deserts. Therefore, this paper selected 10-year-old Hippophae rhamnoides (sea buckthorn) on sandy land on the eastern shore of Qinghai Lake as the study object. Based on spatial and temporal changes of wind regime in the afforestation forest, a structural simulation of airflow near the plant and at different layers above the ground, and the annual changes in wind protection, we studied the wind protection mechanisms of H. rhamnoides as single elements or communities. The results were as follows: the effective protection length of the sublayer of H. rhamnoides was 1.0 to 1.8 m. The higher the layer, the smaller the decrease in wind velocity behind elements, and the smaller the effective protection length. Wind velocity downwind of H. rhamnoides increased, with height increasing where the airflow decreases rate (R) decreased in the sublayer, and increasing in the middle layer as plant height increased. Meanwhile, the airflow decreases rate (R) was negative in the upper layer because it decreased as the plant height increased. The airflow movement between elements had various directions because the upper layer was prone to fluctuations due to the swinging of the crown and branches, and turbulence was seen at the sublayers owing to the mechanical resistance of the elements. When the wind speed at the standard point was 8.5 m/s and the wind direction was east (E), the increase of airflow velocity at the side and center in the upper layer was more significant, and there was a strong wind zone in the azimuth of NW‒N‒NE‒E‒SE, while the S‒SW‒W azimuth zone was weaker. The sand-fixing shrub H. rhamnoides had a significant windproof function, and the 1.5 m square interval density of H. rhamnoides was suitable for alpine desert control projects.

Suggested Citation

  • Lihui Tian & Wangyang Wu & Dengshan Zhang & Yang Yu, 2020. "Airflow Field Around Hippophae rhamnoides in Alpine Semi-Arid Desert," Land, MDPI, vol. 9(5), pages 1-12, May.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:140-:d:354598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/5/140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/5/140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jerome R. Mayaud & Nicholas P. Webb, 2017. "Vegetation in Drylands: Effects on Wind Flow and Aeolian Sediment Transport," Land, MDPI, vol. 6(3), pages 1-24, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justus G. V. van Ramshorst & Lukas Siebicke & Moritz Baumeister & Fernando E. Moyano & Alexander Knohl & Christian Markwitz, 2022. "Reducing Wind Erosion through Agroforestry: A Case Study Using Large Eddy Simulations," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    2. Akito Kono & Toshiya Okuro, 2021. "Spatial Distribution of Shrubs Impacts Relationships among Saltation, Roughness, and Vegetation Structure in an East Asian Rangeland," Land, MDPI, vol. 10(11), pages 1-18, November.
    3. Na Wu & Yongxiao Ge & Jilili Abuduwaili, 2021. "Grain Size Characteristics of Sediments Found in Typical Landscapes in the Playa of Ebinur Lake, Arid Central Asia," Land, MDPI, vol. 10(11), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:5:p:140-:d:354598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.